Do you want to publish a course? Click here

Emergent Chern-Simons excitations due to electron--phonon interaction

152   0   0.0 ( 0 )
 Added by Andreas Sinner
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address the problem of Dirac fermions interacting with longitudinal phonons. A gap in the spectrum of fermions leads to the emergence of the Chern--Simons excitations in the spectrum of phonons. We study the effect of those excitations on observable quantities: the phonon dispersion, the phonon spectral density, and the Hall conductivity.



rate research

Read More

We present the results of inelastic x-ray scattering for magnetite and analyze the energies and spectral widths of the phonon modes with different symmetries in a broad range of temperature 125<T<293 K. The phonon modes with X_4 and Delta_5 symmetries broaden in a nonlinear way with decreasing temperature when the Verwey transition is approached. It is found that the maxima of phonon widths occur away from high-symmetry points which indicates the incommensurate character of critical fluctuations. Strong phonon anharmonicity induced by electron-phonon coupling is discovered within ab initio calculations which take into account local Coulomb interactions at Fe ions. It (i) explains observed anomalous phonon broadening, and (ii) demonstrates that the Verwey transition is a cooperative phenomenon which involves a wide spectrum of phonons coupled to charge fluctuations condensing in the low-symmetry phase.
We study the entanglement entropy between (possibly distinct) topological phases across an interface using an Abelian Chern-Simons description with topological boundary conditions (TBCs) at the interface. From a microscopic point of view, these TBCs correspond to turning on particular gapping interactions between the edge modes across the interface. However, in studying entanglement in the continuum Chern-Simons description, we must confront the problem of non-factorization of the Hilbert space, which is a standard property of gauge theories. We carefully define the entanglement entropy by using an extended Hilbert space construction directly in the continuum theory. We show how a given TBC isolates a corresponding gauge invariant state in the extended Hilbert space, and hence compute the resulting entanglement entropy. We find that the sub-leading correction to the area law remains universal, but depends on the choice of topological boundary conditions. This agrees with the microscopic calculation of cite{Cano:2014pya}. Additionally, we provide a replica path integral calculation for the entropy. In the case when the topological phases across the interface are taken to be identical, our construction gives a novel explanation of the equivalence between the left-right entanglement of (1+1)d Ishibashi states and the spatial entanglement of (2+1)d topological phases.
67 - Robert D. Pisarski 2021
I recount my personal experience interacting with Roman Jackiw in the 1980s, when we both worked on Chern-Simons theories in three dimensions.
214 - M. Einenkel , K. B. Efetov 2011
We discuss the possibility of superconductivity in graphene taking into account both electron-phonon and electron-electron Coulomb interactions. The analysis is carried out assuming that the Fermi energy is far away from the Dirac points, such that the density of the particles (electrons or holes) is high. We derive proper Eliashberg equations that allow us to estimate the critical superconducting temperature. The most favorable is pairing of electrons belonging to different valleys in the spectrum. Using values of electron-phonon coupling estimated in other publications we obtain the critical temperature T_c as a function of the electron (hole) density. This temperature can reach the order of 10 K at the Fermi energy of order 1-2 eV. We show that the dependence of the intervalley pairing on the impurity concentration should be weak.
When phonons couple to fermions in 2D semimetals, the interaction may turn the system into an insulator. There are several insulating phases in which the time reversal and the sublattice symmetries are spontaneously broken. Examples are many-body states commensurate to Haldanes staggered flux model or to lattice models with periodically modulated strain. We find that the effective field theories of these phases exhibit characteristic Chern-Simons terms, whose coefficients are related to the topological invariants of the microscopic model. This implies that the corresponding quantized Hall conductivities characterize these insulating states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا