Do you want to publish a course? Click here

First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors

154   0   0.0 ( 0 )
 Added by Iosif Galanakis
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn$_2$CoAl, Ti$_2$MnAl, Cr$_2$ZnSi, Ti$_2$CoSi and Ti$_2$VAs. We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature, $T_mathrm{c}$. All compounds, except Ti$_2$CoSi possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest and next-nearest neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3$d$-ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and $T_mathrm{c}$ of the SGSs. We find that the $T_mathrm{c}$ of all compounds is much above the room temperature. The calculated magnetization curve for Mn$_2$CoAl as well as the Curie temperature are in very good agreement with available experimental data. The present study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.



rate research

Read More

Spin injection efficiency based on conventional and/or half-metallic ferromagnet/semiconductor is greatly limited by the Schmidt obstacle due to conductivity mismatch, here we proposed that by replacing the metallic injectors with spin gapless semiconductors can significantly reduce the conductive mismatch to enhance spin injection efficiency. By performing first principles calculations based on superlattice structure, we have studied the representative system of Mn2CoAl/semiconductor spin injector scheme. The results showed that a high spin polarization was maintained at the interface in systems of Mn2CoAl/Fe2VAl constructed with (100) interface and Mn2CoAl/GaAs with (110) interface, and the latter is expected to possess long spin diffusion length. Inherited from the spin gapless feature of Mn2CoAl, a pronounced dip was observed around the Fermi level in the majority-spin density-of-states in both systems, suggesting fast transport of the low-density carriers.
74 - Qiang Gao , Ingo Opahle , 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the thermodynamic, mechanical, and dynamical stabilities, we successfully identified 70 stable SGSs, confirmed by explicit electronic structure calculations with proper magnetic ground states. It is demonstrated that all four types of SGSs can be realized, defined based on the spin characters of the bands around the Fermi energy, and the type-II SGSs show promising transport properties for spintronic applications. The effect of spin-orbit coupling is investigated, resulting in large anisotropic magnetoresistance and anomalous Nernst effects.
The Ohmic spin diode (OSD) is a recent concept in spintronics, which is based on half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to realize the OSD for room temperature applications as these materials possess very high Curie temperatures as well as half-metallic and spin-gapless semiconducting behavior within the same family. Using state-of-the-art first-principles calculations combined with the non-equilibrium Greens function method we design four different OSDs based on half-metallic and spin-gapless semiconducting quaternary Heusler compounds. All four OSDs exhibit linear current-voltage ($I-V$) characteristics with zero threshold voltage $V_T$. We show that these OSDs possess a small leakage current, which stems from the overlap of the conduction and valence band edges of opposite spin channels around the Fermi level in the SGS electrodes. The obtained on/off current ratios vary between $30$ and $10^5$. Our results can pave the way for the experimental fabrication of the OSDs within the family of ordered quaternary Heusler compounds.
We report here non-collinear magnetic configurations in the Heusler alloys Ni2MnGa and Ni2MnAl which are interesting in the context of the magnetic shape memory effect. The total energies for different spin spirals are calculated and the ground state magnetic structures are identified. The calculated dispersion curves are used to estimate the Curie temperature which is found to be in good agreement with experiments. In addition, the variation of the magnetic moment as a function of the spiral structure is studied. Most of the variation is associated with Ni, and symmetry constraints relevant for the magnetization are identified. Based on the calculated results, the effect of the constituent atoms in determining the Curie temperature is discussed.
Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the $GW$ approximation within the framework of the FLAPW method, we study the quasi-particle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the textit{sp}-electron based semiconductors such as Si and GaAs, in these systems the many-body corrections have a minimal effect on the electronic band structure and the energy band gap increases by less than 0.2~eV, which makes the starting point density functional theory (DFT) a good approximation for the description of electronic and optical properties of these materials. Furthermore, the band gap can be tuned either by the variation of the lattice parameter or by the substitution of the emph{sp}-chemical element.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا