Do you want to publish a course? Click here

First principles design of Ohmic spin diodes based on quaternary Heusler compounds

117   0   0.0 ( 0 )
 Added by Thorsten Aull
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Ohmic spin diode (OSD) is a recent concept in spintronics, which is based on half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to realize the OSD for room temperature applications as these materials possess very high Curie temperatures as well as half-metallic and spin-gapless semiconducting behavior within the same family. Using state-of-the-art first-principles calculations combined with the non-equilibrium Greens function method we design four different OSDs based on half-metallic and spin-gapless semiconducting quaternary Heusler compounds. All four OSDs exhibit linear current-voltage ($I-V$) characteristics with zero threshold voltage $V_T$. We show that these OSDs possess a small leakage current, which stems from the overlap of the conduction and valence band edges of opposite spin channels around the Fermi level in the SGS electrodes. The obtained on/off current ratios vary between $30$ and $10^5$. Our results can pave the way for the experimental fabrication of the OSDs within the family of ordered quaternary Heusler compounds.



rate research

Read More

Reconfigurable magnetic tunnel diodes and transistors are a new concept in spintronics. The realization of such a device requires the use of materials with unique spin-dependent electronic properties such as half-metallic magnets (HMMs) and spin-gapless semiconductors (SGSs). Quaternary Heusler compounds offer a unique platform to design within the same family of compounds HMMs and SGSs with similar lattice constants to make coherent growth of the consecutive spacers of the device possible. Employing state-of-the-art first-principles calculations, we scan the quaternary Heusler compounds and identify suitable candidates for these spintronic devices combining the desirable properties: (i) HMMs with sizable energy gap or SGSs with spin gaps both below and above the Fermi level, (ii) high Curie temperature, (iii) convex hull energy distance less than 0.20 eV, and (iv) negative formation energies. Our results pave the way for the experimental realization of the proposed magnetic tunnel diodes and transistors.
74 - Qiang Gao , Ingo Opahle , 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the thermodynamic, mechanical, and dynamical stabilities, we successfully identified 70 stable SGSs, confirmed by explicit electronic structure calculations with proper magnetic ground states. It is demonstrated that all four types of SGSs can be realized, defined based on the spin characters of the bands around the Fermi energy, and the type-II SGSs show promising transport properties for spintronic applications. The effect of spin-orbit coupling is investigated, resulting in large anisotropic magnetoresistance and anomalous Nernst effects.
Antiferromagnetic spintronics is an on-going growing field of research. Employing both standard density functional theory and the $GW$ approximation within the framework of the FLAPW method, we study the electronic and magnetic properties of seven potential antiferromagnetic semiconducting Heusler compounds with 18 (or 28 when Zn is present) valence electrons per unit cell. We show that in these compounds G-type antiferromagnetism is the ground state and that they are all either emiconductors (Cr$_2$ScP, Cr$_2$TiZn, V$_2$ScP, V$_2$TiSi, and V$_3$Al) or semimetals (Mn$_2$MgZn and Mn$_2$NaAl). The many-body corrections have a minimal effect on the electronic band structure with respect to the standard electronic structure calculations.
This work is the first step towards understanding thermionic transport properties of graphene/phosphorene/graphene van der Waals heterostructures in contact with gold electrodes by using density functional theory based first principles calculations combined with real space Greens function formalism. We show that for monolayer phosphorene in the heterostructure, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling dominated transport to thermionic dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices.
We have elaborately studied the electronic structure of 555-777 divacancy (DV) defected armchair edged graphene nanoribbon (AGNR) and transport properties of AGNR based two-terminal device constructed with one defected electrode and one N doped electrode, by using density functional theory and non-equilibrium Greens function based approach. The introduction of 555-777 DV defect into AGNRs, results in a shifting of the {pi} and {pi}* bands towards the higher energy value which indicates a shifting of the Fermi level towards the lower energy. Formation of a potential barrier, very similar to that of conventional p-n junction, has been observed across the junction of defected and N doped AGNR. The prominent asymmetric feature of the current in the positive and negative bias indicates the diode like property of the device with high rectifying efficiency within wide range of bias voltages. The device also shows robust negative differential resistance (NDR) with very high peak-to-valley ratio. The analysis of the shifting of the energy states of the electrodes and the modification of the transmission function with applied bias provides an insight into the nonlinearity and asymmetry observed in the I-V characteristics. Variation of the transport properties on the width of the ribbon has also been discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا