Do you want to publish a course? Click here

Factorisation of equivariant spectral triples in unbounded KK-theory

128   0   0.0 ( 0 )
 Added by Adam Rennie
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We provide sufficient conditions to factorise an equivariant spectral triple as a Kasparov product of unbounded classes constructed from the group action on the algebra and from the fixed point spectral triple. Our results are for the action of compact abelian Lie groups, and we demonstrate them with examples from manifolds and $theta$-deformations. In particular we show that equivariant Dirac-type spectral triples on the total space of a torus principal bundle always factorise. We also present an example that shows what goes wrong in the absence of our sufficient conditions (and how we get around it for this example).



rate research

Read More

172 - Bram Mesland , Adam Rennie 2015
By considering the general properties of approximate units in differentiable algebras, we are able to present a unified approach to characterising completeness of spectral metric spaces, existence of connections on modules, and the lifting of Kasparov products to the unbounded category. In particular, by strengthening Kasparovs technical theorem, we show that given any two composable KK-classes, we can find unbounded representatives whose product can be constructed to yield an unbounded representative of the Kasparov product.
90 - Jens Kaad 2019
In the founding paper on unbounded $KK$-theory it was established by Baaj and Julg that the bounded transform, which associates a class in $KK$-theory to any unbounded Kasparov module, is a surjective homomorphism (under a separability assumption). In this paper, we provide an equivalence relation on unbounded Kasparov modules and we thereby describe the kernel of the bounded transform. This allows us to introduce a notion of topological unbounded $KK$-theory, which becomes isomorphic to $KK$-theory via the bounded transform. The equivalence relation is formulated entirely at the level of unbounded Kasparov modules and consists of homotopies together with an extra degeneracy condition. Our degenerate unbounded Kasparov modules are called spectrally decomposable since they admit a decomposition into a part with positive spectrum and a part with negative spectrum.
192 - A. Carey , V. Gayral , J. Phillips 2014
We prove two results about nonunital index theory left open by [CGRS2]. The first is that the spectral triple arising from an action of the reals on a C*-algebra with invariant trace satisfies the hypotheses of the nonunital local index formula. The second result concerns the meaning of spectral flow in the nonunital case. For the special case of paths arising from the odd index pairing for smooth spectral triples in the nonunital setting we are able to connect with earlier approaches to the analytic definition of spectral flow.
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.
112 - Caterina Consani 2002
We construct spectral triples associated to Schottky--Mumford curves, in such a way that the local Euler factor can be recovered from the zeta functions of such spectral triples. We propose a way of extending this construction to the case where the curve is not k-split degenerate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا