No Arabic abstract
We consider finite temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger (GZ) quantization scheme, which entails the introduction of a dynamical mass scale (Gribov mass) directly influencing the Green functions of the theory. Here, we determine simultaneously the Polyakov loop (vacuum expectation value) and Gribov mass in terms of temperature, by minimizing the vacuum energy w.r.t. the Polyakov loop parameter and solving the Gribov gap equation. Inspired by the Casimir energy-style of computation, we illustrate the usage of Zeta function regularization in finite temperature calculations. Our main result is that the Gribov mass directly feels the deconfinement transition, visible from a cusp occurring at the same temperature where the Polyakov loop becomes nonzero. In this exploratory work we mainly restrict ourselves to the original Gribov-Zwanziger quantization procedure in order to illustrate the approach and the potential direct link between the vacuum structure of the theory (dynamical mass scales) and (de)confinement. We also present a first look at the critical temperature obtained from the Refined Gribov-Zwanziger approach. Finally, a particular problem for the pressure at low temperatures is reported.
We present a detailed spectroscopic study of a sample of bright, mostly cool, stars observed with the Short-Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO), which enables the accurate determination of the stellar parameters of the cool giants, but also serves as a critical review of the ISO-SWS calibration.
Following a recent proposal by Cooper and Zwanziger we investigate via $SU(2)$ lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e.~the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g.~the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.
State-of-the-art classifiers have been shown to be largely vulnerable to adversarial perturbations. One of the most effective strategies to improve robustness is adversarial training. In this paper, we investigate the effect of adversarial training on the geometry of the classification landscape and decision boundaries. We show in particular that adversarial training leads to a significant decrease in the curvature of the loss surface with respect to inputs, leading to a drastically more linear behaviour of the network. Using a locally quadratic approximation, we provide theoretical evidence on the existence of a strong relation between large robustness and small curvature. To further show the importance of reduced curvature for improving the robustness, we propose a new regularizer that directly minimizes curvature of the loss surface, and leads to adversarial robustness that is on par with adversarial training. Besides being a more efficient and principled alternative to adversarial training, the proposed regularizer confirms our claims on the importance of exhibiting quasi-linear behavior in the vicinity of data points in order to achieve robustness.
We consider Yang-Mills theories quantized in the Landau gauge in the presence of the Gribov horizon via the refined Gribov Zwanziger (RGZ) framework. As the restriction of the gauge path integral to the Gribov region is taken into account, the resulting gauge field propagators display a nontrivial infrared behavior, being very close to the ones observed in lattice gauge field theory simulations. In this work, we explore a higher correlation function in the Refined Gribov-Zwanziger theory: the ghost-gluon interaction vertex, at one-loop level. We show explicit compatibility with kinematical constraints, as required by the Ward identities of the theory, and obtain analytical expressions in the limit of vanishing gluon momentum. We find that the RGZ results are nontrivial in the infrared regime, being compatible with lattice YM simulations in both SU(2) and SU(3), as well as with solutions from Schwinger-Dyson equations in different truncation schemes, Functional Renormalization Group analysis, and the RG-improved Curci-Ferrari model.
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.