Do you want to publish a course? Click here

Testing microvariability in quasar differential light curves using several field stars

60   0   0.0 ( 0 )
 Added by Jose A. de Diego
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microvariability consists in small time scale variations of low amplitude in the photometric light curves of quasars, and represents an important tool to investigate their inner core. Detection of quasar microvariations is challenging for their non-periodicity, as well as the need for high monitoring frequency and high signal-to-noise ratio. Statistical tests developed for the analysis of quasar differential light curves usually show either low power or low reliability, or both. In this paper we compare two statistical procedures that include several stars to perform tests with enhanced power and high reliability. We perform light curve simulations of variable quasars and non-variable stars, and analyze them with statistical procedures developed from the F-test and the analysis of variance. The results show a large improvement in the power of both statistical probes, and a larger reliability, when several stars are included in the analysis. The results from the simulations agree with those obtained from observations of real quasars. The high power and high reliability of the tests discussed in this paper improve the results that can be obtained from short and long time scale variability studies. These techniques are not limited to quasar variability; on the contrary, they can be easily implemented to other sources such as variable stars. Their applications to future research and to the analysis of large field photometric monitoring archives can reveal new variable sources.



rate research

Read More

206 - D. Sluse , M. Tewes 2014
Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au .
We present the first analysis of results from the SuperWASP Variable Stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains $>$1 million classifications corresponding to $>$500,000 object-period combinations, provided by citizen scientist volunteers. Volunteer-classified light curves have $sim$89 per cent accuracy for detached and semi-detached eclipsing binaries, but only $sim$9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow up. We present preliminary findings on various unique and extreme variables in this analysis, including long period contact binaries and binaries near the short-period cutoff, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP Variable Stars project.
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly alpha and CIV 1550AA at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission-line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
153 - S. Rathna Kumar 2017
In this work, we propose refinements to the difference-smoothing algorithm for measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for estimation of time delay uncertainty and using a plot of normalized $chi^2$ computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult `rungs -- rung3 and rung4 -- of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested `rungs. The MATLAB codes used in this work and the detailed results are made publicly available at https://github.com/rathnakumars/difference-smoothing
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا