Do you want to publish a course? Click here

GERLUMPH Data Release 2: 2.5 billion simulated microlensing light curves

95   0   0.0 ( 0 )
 Added by Georgios Vernardos
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au .



rate research

Read More

We present the second public data release of the Dark Energy Survey, DES DR2, based on optical/near-infrared imaging by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. DES DR2 consists of reduced single-epoch and coadded images, a source catalog derived from coadded images, and associated data products assembled from 6 years of DES science operations. This release includes data from the DES wide-area survey covering ~5000 deg2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR2 has a median delivered point-spread function full-width at half maximum of g= 1.11, r= 0.95, i= 0.88, z= 0.83, and Y= 0.90 arcsec photometric uniformity with a standard deviation of < 3 mmag with respect to Gaia DR2 G-band, a photometric accuracy of ~10 mmag, and a median internal astrometric precision of ~27 mas. The median coadded catalog depth for a 1.95 arcsec diameter aperture at S/N= 10 is g= 24.7, r= 24.4, i= 23.8, z= 23.1 and Y= 21.7 mag. DES DR2 includes ~691 million distinct astronomical objects detected in 10,169 coadded image tiles of size 0.534 deg2 produced from 76,217 single-epoch images. After a basic quality selection, benchmark galaxy and stellar samples contain 543 million and 145 million objects, respectively. These data are accessible through several interfaces, including interactive image visualization tools, web-based query clients, image cutout servers and Jupyter notebooks. DES DR2 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
CONTEXT: The second Gaia data release (DR2) took place on April 2018. DR2 included photometry for more than 1.3 10^9 sources in G, BP, and RP. Even though Gaia DR2 photometry is very precise, there are currently three alternative definitions of the sensitivity curves that show significative differences. AIMS: The aim of this paper is to improve the quality of the input calibration data to produce new compatible definitions of the three bands and to identify the reasons for the discrepancies between previous definitions. METHODS: We have searched the HST archive for STIS spectra with G430L+G750L data obtained with wide apertures and combined them with the CALSPEC library to produce a high quality SED library of 122 stars with a broad range of colors, including three very red stars. We have used it to compute new sensitivity curves for G, BP, and RP using a functional analytical formalism. RESULTS: The new curves are significantly better than the two previous attempts, REV and WEI. For G we confirm the existence of a systematic bias in magnitude and correct a color term present in REV. For BP we confirm the need to define two magnitude ranges with different sensitivity curves and measure the cut between them at G = 10.87 with a significant increase in precision. The new curves also fit the data better than either REV or WEI. For RP we obtain a sensitivity curve that better fits the STIS spectra and we find that the differences with previous attempts reside in a systematic effect between ground-based and HST spectral libraries. Additional evidence from color-color diagrams indicate that the new sensitivity curve is more accurate. Nevertheless, there is still room for improvement in the accuracy of the sensitivity curves because of the current dearth of good-quality red calibrators: adding more to the sample should be a priority before Gaia data release 3 takes place.
In Astronomy, the brightness of a source is typically expressed in terms of magnitude. Conventionally, the magnitude is defined by the logarithm of the received flux. This relationship is known as the Pogson formula. For received flux with a small signal to noise ratio (S/N), however, the formula gives a large magnitude error. We investigate whether the use of Inverse Hyperbolic Sine function (after this referred to as the Asinh magnitude) in the modified formulae could allow for an alternative calculation of magnitudes for small S/N flux, and whether the new approach is better for representing the brightness of that region. We study the possibility of increasing the detection level of gravitational microlensing using 40 selected microlensing light curves from 2013 and 2014 season and by using the Asinh magnitude. The photometric data of the selected events is obtained from the Observational Gravitational Lensing Experiment (OGLE). We found that the utilization of the Asinh magnitude makes the events brighter compared to using the logarithmic magnitude, with an average of about $3.42 times10^{-2}$ magnitude and the average of the difference of error between the logarithmic and the Asinh magnitude is about $2.21 times10^{-2}$ magnitude. The microlensing events, OB 140847 and OB 140885 are found to have the largest difference values among the selected events. Using a Gaussian fit to find the peak for OB140847 and OB140885, we conclude statistically that the Asinh magnitude gives better mean squared values of the regression and narrower residual histograms than the Pogson magnitude. Based on these results, we also attempt to propose a limit of magnitude value from which the use of the Asinh magnitude is optimal for small S/N data.
For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetry of the resulting probability distribution. Here we infer distances to essentially all 1.33 billion stars with parallaxes published in the second gaia data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction towards, individual stars. We analyse the characteristics of the catalogue and validate it using clusters. The catalogue can be queried on the Gaia archive using ADQL at http://gea.esac.esa.int/archive/ and downloaded from http://www.mpia.de/~calj/gdr2_distances.html .
We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single epoch images, coadded images, coadded source catalogs, and associated products and services assembled over the first three years of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (August 2013 to February 2016) by the Dark Energy Camera mounted on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ~5,000 sq. deg. of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g = 1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.90 arcsec FWHM, a photometric precision of < 1% in all bands, and an astrometric precision of 151 mas. The median coadded catalog depth for a 1.95 diameter aperture at S/N = 10 is g = 24.33, r = 24.08, i = 23.44, z = 22.69, and Y = 21.44 mag. DES DR1 includes nearly 400M distinct astronomical objects detected in ~10,000 coadd tiles of size 0.534 sq. deg. produced from ~39,000 individual exposures. Benchmark galaxy and stellar samples contain ~310M and ~ 80M objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive coadd image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا