No Arabic abstract
The unique properties of organic semiconductors make them versatile base materials for many applications ranging from light emitting diodes to transistors. The low spin-orbit coupling typical for carbon-based materials and the resulting long spin lifetimes give rise to a large influence of the electron spin on charge transport which can be exploited in spintronic devices or to improve solar cell efficiencies. Magnetic resonance techniques are particularly helpful to elucidate the microscopic structure of paramagnetic states in semiconductors as well as the transport processes they are involved in. However, in organic devices the nature of the dominant spin-dependent processes is still subject to considerable debate. Using multi-frequency pulsed electrically detected magnetic resonance (pEDMR), we show that the spin-dependent response of P3HT/PCBM solar cells at low temperatures is governed by bipolar polaron pair recombination involving the positive and negative polarons in P3HT and PCBM, respectively, thus excluding a unipolar bipolaron formation as the main contribution to the spin-dependent charge transfer in this temperature regime. Moreover the polaron-polaron coupling strength and the recombination times of polaron pairs with parallel and antiparallel spins are determined. Our results demonstrate that the pEDMR pulse sequences recently developed for inorganic semiconductor devices can very successfully be transferred to the study of spin and charge transport in organic semiconductors, in particular when the different polarons can be distinguished spectrally.
The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80nm Au, (2) mix of 5nm, 50nm, 80nm Au, (3) 40nm Ag, and (4) 10nm, 40nm, 60nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% in P3HT: PCBM blends, does not affect the behaviour of the blends themselves.
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW (QSGW) approximation for MAPI, CdTe and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.
The performance of kesterite thin-film solar cells is limited by a low open-circuit voltage due to defect-mediated electron-hole recombination. We calculate the non-radiative carrier-capture cross sections and Shockley-Read-Hall recombination coefficients of deep-level point defects in Cu$_2$ZnSnS$_4$ (CZTS) from first-principles. While the oxidation state of Sn is +4 in stoichiometric CZTS, inert lone pair (5$s^2$) formation lowers the oxidation state to +2. The stability of the lone pair suppresses the ionization of certain point defects, inducing charge transition levels deep in the band gap. We find large lattice distortions associated with the lone-pair defect centers due to the difference in ionic radii between Sn(II) and Sn(IV). The combination of a deep trap level and large lattice distortion facilitates efficient non-radiative carrier capture, with capture cross-sections exceeding $10^{-12}$ cm$^2$. The results highlight a connection between redox active cations and `killer defect centres that form giant carrier traps. This lone pair effect will be relevant to other emerging photovoltaic materials containing n$s^2$ cations.
Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has so far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.