No Arabic abstract
Starting from the Wigner-Moyal equation coupled to Poissons equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from the classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.
We study the chiral anomaly in disordered Weyl semimetals, where the broken translational symmetry prevents the direct application of Nielsen and Ninomiyas mechanism and disorder is strong enough that quantum effects are important. In the weak disorder regime, there exist rare regions of the random potential where the disorder strength is locally strong, which gives rise to quasilocalized resonances and their effect on the chiral anomaly is unknown. We numerically show that these resonant states do not affect the chiral anomaly only in the case of a single Weyl node. At energies away from the Weyl point, or with strong disorder where one is deep in the diffusive regime, the chiral Landau level itself is not well defined and the semiclassical treatment is not justified. In this limit, we analytically use the supersymmetry method and find that the Chern-Simons term in the effective action which is not present in nontopological systems gives rise to a nonzero average level velocity which implies chiral charge pumping. We numerically establish that the nonzero average level velocity serves as an indicator of the chiral anomaly in the diffusive limit.
We study the dynamical complexity of an open quantum driven double-well oscillator, mapping its dependence on effective Plancks constant $hbar_{eff}equivbeta$ and coupling to the environment, $Gamma$. We study this using stochastic Schrodinger equations, semiclassical equations, and the classical limit equation. We show that (i) the dynamical complexity initially increases with effective Hilbert space size (as $beta$ decreases) such that the most quantum systems are the least dynamically complex. (ii) If the classical limit is chaotic, that is the most dynamically complex (iii) if the classical limit is regular, there is always a quantum system more dynamically complex than the classical system. There are several parameter regimes where the quantum system is chaotic even though the classical limit is not. While some of the quantum chaotic attractors are of the same family as the classical limiting attractors, we also find a quantum attractor with no classical counterpart. These phenomena occur in experimentally accessible regimes.
For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.
The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newtons second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.
Incorporation of kinetic effects such as Landau damping into a fluid framework was pioneered by Hammett and Perkins PRL 1990, by obtaining closures of the fluid hierarchy, where the gyrotropic heat flux fluctuations or the deviation of the 4th-order gyrotropic fluid moment, are expressed through lower-order fluid moments. To obtain a closure of a fluid model expanded around a bi-Maxwellian distribution function, the usual plasma dispersion function $Z(zeta)$ that appears in kinetic theory or the associated plasma response function $R(zeta)=1 + zeta Z(zeta)$, have to be approximated with a suitable Pade approximant in such a way, that the closure is valid for all $zeta$ values. Such closures are rare, and the original closures of Hammett and Perkins are often employed. Here we present a complete mapping of all plausible Landau fluid closures that can be constructed at the level of 4th-order moments in the gyrotropic limit and we identify the most precise closures. Furthermore, by considering 1D closures at higher-order moments, we show that it is possible to reproduce linear Landau damping in the fluid framework to any desired precision, thus showing convergence of the fluid and collisionless kinetic descriptions.