Do you want to publish a course? Click here

Quantum plasma effects in the classical regime

123   0   0.0 ( 0 )
 Added by Mattias Marklund
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

rate research

Read More

We experimentally study a circuit quantum acoustodynamics system, which consists of a superconducting artificial atom, coupled to both a two-dimensional surface acoustic wave resonator and a one-dimensional microwave transmission line. The strong coupling between the artificial atom and the acoustic wave resonator is confirmed by the observation of the vacuum Rabi splitting at the base temperature of dilution refrigerator. We show that the propagation of microwave photons in the microwave transmission line can be controlled by a few phonons in the acoustic wave resonator. Furthermore, we demonstrate the temperature effect on the measurements of the Rabi splitting and temperature induced transitions from high excited dressed states. We find that the spectrum structure of two-peak for the Rabi splitting becomes into those of several peaks, and gradually disappears with the increase of the environmental temperature $T$. The quantum-to-classical transition is observed around the crossover temperature $T_{c}$, which is determined via the thermal fluctuation energy $k_{B}T$ and the characteristic energy level spacing of the coupled system. Experimental results agree well with the theoretical simulations via the master equation of the coupled system at different effective temperatures.
The Coupled Cluster (CC) method is used to compute the electronic correlation energy in atoms and molecules and often leads to highly accurate results. However, due to its single-reference nature, standard CC in its projected form fails to describe quantum states characterized by strong electronic correlations and multi-reference projective methods become necessary. On the other hand, quantum algorithms for the solution of many-electron problems have also emerged recently. The quantum UCC with singles and doubles (q-UCCSD) is a popular wavefunction Ansatz for the Variational Quantum Eigensolver (VQE) algorithm. The variational nature of this approach can lead to significant advantages compared to its classical equivalent in the projected form, in particular for the description of strong electronic correlation. However, due to the large number of gate operations required in q-UCCSD, approximations need to be introduced in order to make this approach implementable in a state-of-the-art quantum computer. In this work, we evaluate several variants of the standard q-UCCSD Ansatz in which only a subset of excitations is included. In particular, we investigate the singlet and pair q-UCCD approaches combined with orbital optimization. We show that these approaches can capture the dissociation/distortion profiles of challenging systems such as H$_4$, H$_2$O and N$_2$ molecules, as well as the one-dimensional periodic Fermi-Hubbard chain. These results promote the future use of q-UCC methods for the solution of challenging electronic structure problems in quantum chemistry.
Quantum theory and relativity offer different conceptions of time. To explore the conflict between them, we study a quantum version of the light-clock commonly used to illustrate relativistic time dilation. This semiclassical model combines elements of both theories. We show for Gaussian states of the light field that the clock time is independent of the initial state. We calculate the discrepancy between two such clocks when one is held in a gravitational field and the other is left to fall a certain distance. Contrasting our results with the case of pointlike observers in general relativity, as well as classical light-clocks, we find both quantitative and qualitative differences. We find that the quantum contribution to the discrepancy between the two clocks increases with the gravitational field strength, and results in a minimum resolution of the dropped clock (distinct from the quantum uncertainty in its measurement).
We study the simplest optomechanical system with a focus on the bistable regime. The covariance matrix formalism allows us to study both cooling and entanglement in a unified framework. We identify two key factors governing entanglement, namely the bistability parameter, i.e. the distance from the end of a stable branch in the bistable regime, and the effective detuning, and we describe the optimum regime where entanglement is greatest. We also show that in general entanglement is a non-monotonic function of optomechanical coupling. This is especially important in understanding the optomechanical entanglement of the second stable branch.
Classical optomechanical systems feature self-sustained oscillations, where multiple periodic orbits at different amplitudes coexist. We study how this multistability is realized in the quantum regime, where new dynamical patterns appear because quantum trajectories can move between different classical orbits. We explain the resulting quantum dynamics from the phase space point of view, and provide a quantitative description in terms of autocorrelation functions. In this way we can identify clear dynamical signatures of the crossover from classical to quantum mechanics in experimentally accessible quantities. Finally, we discuss a possible interpretation of our results in the sense that quantum mechanics protects optomechanical systems against the chaotic dynamics realized in the classical limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا