Do you want to publish a course? Click here

Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

251   0   0.0 ( 0 )
 Added by Philipp Schneeweiss
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir--Polder force parallel to the fiber axis arises. For a simple model case, we show that the such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir--Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.



rate research

Read More

88 - E. Stourm , M. Lepers , J. Robert 2020
In this paper, we report on numerical calculations of the spontaneous emission rates and Lamb shifts of a $^{87}text{Rb}$ atom in a Rydberg-excited state $left(nleq30right)$ located close to a silica optical nanofiber. We investigate how these quantities depend on the fibers radius, the distance of the atom to the fiber, the direction of the atomic angular momentum polarization as well as the different atomic quantum numbers. We also study the contribution of quadrupolar transitions, which may be substantial for highly polarizable Rydberg states. Our calculations are performed in the macroscopic quantum electrodynamics formalism, based on the dyadic Greens function method. This allows us to take dispersive and absorptive characteristics of silica into account; this is of major importance since Rydberg atoms emit along many different transitions whose frequencies cover a wide range of the electromagnetic spectrum. Our work is an important initial step towards building a Rydberg atom-nanofiber interface for quantum optics and quantum information purposes.
We derive the lateral Casimir-Polder force on a ground state atom on top of a corrugated surface, up to first order in the corrugation amplitude. Our calculation is based on the scattering approach, which takes into account nonspecular reflections and polarization mixing for electromagnetic quantum fluctuations impinging on real materials. We compare our first order exact result with two commonly used approximation methods. We show that the proximity force approximation (large corrugation wavelengths) overestimates the lateral force, while the pairwise summation approach underestimates it due to the non-additivity of dispersion forces. We argue that a frequency shift measurement for the dipolar lateral oscillations of cold atoms could provide a striking demonstration of nontrivial geometrical effects on the quantum vacuum.
Polarisable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional, velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalised Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atom and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface plasmon frequency.
Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. Here we perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P_{3/2}) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its non-resonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step towards atom trapping in the extreme near field, possibly without the use of external fields.
We derive upper and lower bounds on the Casimir--Polder force between an anisotropic dipolar body and a macroscopic body separated by vacuum via algebraic properties of Maxwells equations. These bounds require only a coarse characterization of the system---the material composition of the macroscopic object, the polarizability of the dipole, and any convenient partition between the two objects---to encompass all structuring possibilities. We find that the attractive Casimir--Polder force between a polarizable dipole and a uniform planar semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently predicted geometries involving conductors with sharp edges. Our results have ramifications for the design of surfaces to trap, suspend, or adsorb ultracold gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا