Do you want to publish a course? Click here

Cuspidal Calogero-Moser and Lusztig families for Coxeter groups

167   0   0.0 ( 0 )
 Added by Ulrich Thiel
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The goal of this paper is to compute the cuspidal Calogero-Moser families for all infinite families of finite Coxeter groups, at all parameters. We do this by first computing the symplectic leaves of the associated Calogero-Moser space and then by classifying certain rigid modules. Numerical evidence suggests that there is a very close relationship between Calogero-Moser families and Lusztig families. Our classification shows that, additionally, the cuspidal Calogero-Moser families equal cuspidal Lusztig families for the infinite families of Coxeter groups.



rate research

Read More

113 - Zhiwei Yun 2019
We define and study cocycles on a Coxeter group in each degree generalizing the sign function. When the Coxeter group is a Weyl group, we explain how the degree three cocycle arises naturally from geometry representation theory.
271 - Richard Hepworth 2015
We prove that certain families of Coxeter groups and inclusions $W_1hookrightarrow W_2hookrightarrow...$ satisfy homological stability, meaning that in each degree the homology $H_ast(BW_n)$ is eventually independent of $n$. This gives a uniform treatment of homological stability for the families of Coxeter groups of type $A_n$, $B_n$ and $D_n$, recovering existing results in the first two cases, and giving a new result in the third. The key step in our proof is to show that a certain simplicial complex with $W_n$-action is highly connected. To do this we show that the barycentric subdivision is an instance of the basic construction, and then use Daviss description of the basic construction as an increasing union of chambers to deduce the required connectivity.
Let $(bf U, bf U^imath)$ be a quantum symmetric pair of Kac-Moody type. The $imath$quantum groups $bf U^imath$ and the universal $imath$quantum groups $widetilde{bf U}^imath$ can be viewed as a generalization of quantum groups and Drinfeld doubles $widetilde{bf U}$. In this paper we formulate and establish Serre-Lusztig relations for $imath$quantum groups in terms of $imath$divided powers, which are an $imath$-analog of Lusztigs higher order Serre relations for quantum groups. This has applications to braid group symmetries on $imath$quantum groups.
Let T_n be the maximal torus of diagonal matrices in GL_n, t_n be the Lie algebra of T_n and let N_n=N_{GL_n}(T_n) be the normalizer of T_n in GL_n. Consider then the quotient stacks [t_n/N_n] and [gl_n/GL_n] for the conjugation actions. In this paper we construct an equivalence I:D_c^b([t_n/N_n]) --> D_c^b([gl_n/GL_n]) between the bounded derived categories of constructible l-adic sheaves.
Let H be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for H, which conjecturally puts supercuspidal H-representations in bijection with such L-parameters. We also define a cuspidal support map and Bernstein components for enhanced L-parameters, in analogy with Bernsteins theory of representations of p-adic groups. We check that for several well-known reductive groups these analogies are actually precise. Furthermore we reveal a new structure in the space of enhanced L-parameters for H, that of a disjoint union of twisted extended quotients. This is an analogue of the ABPS conjecture (about irreducible H-representations) on the Galois side of the local Langlands correspondence. Only, on the Galois side it is no longer conjectural. These results will be useful to reduce the problem of finding a local Langlands correspondence for H-representations to the corresponding problem for supercuspidal representations of Levi subgroups of H. The main machinery behind this comes from perverse sheaves on algebraic groups. We extend Lusztigs generalized Springer correspondence to disconnected complex reductive groups G. It provides a bijection between, on the one hand, pairs consisting of a unipotent element u in G and an irreducible representation of the component group of the centralizer of u in G, and, on the other hand, irreducible representations of a set of twisted group algebras of certain finite groups. Each of these twisted group algebras contains the group algebra of a Weyl group, which comes from the neutral component of G.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا