Do you want to publish a course? Click here

Generalizations of the Springer correspondence and cuspidal Langlands parameters

125   0   0.0 ( 0 )
 Added by Maarten Solleveld
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Let H be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for H, which conjecturally puts supercuspidal H-representations in bijection with such L-parameters. We also define a cuspidal support map and Bernstein components for enhanced L-parameters, in analogy with Bernsteins theory of representations of p-adic groups. We check that for several well-known reductive groups these analogies are actually precise. Furthermore we reveal a new structure in the space of enhanced L-parameters for H, that of a disjoint union of twisted extended quotients. This is an analogue of the ABPS conjecture (about irreducible H-representations) on the Galois side of the local Langlands correspondence. Only, on the Galois side it is no longer conjectural. These results will be useful to reduce the problem of finding a local Langlands correspondence for H-representations to the corresponding problem for supercuspidal representations of Levi subgroups of H. The main machinery behind this comes from perverse sheaves on algebraic groups. We extend Lusztigs generalized Springer correspondence to disconnected complex reductive groups G. It provides a bijection between, on the one hand, pairs consisting of a unipotent element u in G and an irreducible representation of the component group of the centralizer of u in G, and, on the other hand, irreducible representations of a set of twisted group algebras of certain finite groups. Each of these twisted group algebras contains the group algebra of a Weyl group, which comes from the neutral component of G.



rate research

Read More

In this paper we establish Springer correspondence for the symmetric pair $(mathrm{SL}(N),mathrm{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaves construction due to Grinberg. As applications, we obtain results on cohomology of Hessenberg varieties and geometric constructions of irreducible representations of Hecke algebras of symmetric groups at $q=-1$.
We define the notion of basic set data for finite groups (building on the notion of basic set, but including an order on the irreducible characters as part of the structure), and we prove that the Springer correspondence provides basic set data for Weyl groups. Then we use this to determine explicitly the modular Springer correspondence for classical types (defined over a base field of odd characteristic $p$, and with coefficients in a field of odd characteristic $ell eq p$): the modular case is obtained as a restriction of the ordinary case to a basic set. In order to do so, we compare the order on bipartitions introduced by Dipper and James with the order induced by the Springer correspondence. We also provide a quicker proof, by sorting characters according to the dimension of the corresponding Springer fiber, an invariant which is directly computable from symbols.
This is an overview of our series of papers on the modular generalized Springer correspondence. It is an expansion of a lecture given by the second author in the Fifth Conference of the Tsinghua Sanya International Mathematics Forum, Sanya, December 2014, as part of the Master Lecture `Algebraic Groups and their Representations Workshop honouring G. Lusztig. The material that has not appeared in print before includes some discussion of the motivating idea of modular character sheaves, and heuristic remarks about geometric functors of parabolic induction and restriction.
214 - Daniel Juteau 2014
The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra. In this article, we consider a modular version of the theory, and show that the decomposition numbers of a Weyl group are particular cases of decomposition numbers for equivariant perverse sheaves on the nilpotent cone. We give some decomposition numbers which can be obtained geometrically. In the case of the symmetric group, we show that James row and column removal rule for the symmetric group can be derived from a smooth equivalence between nilpotent singularities proved by Kraft and Procesi. We give the complete structure of the Springer and Grothendieck sheaves in the case of $SL_2$. Finally, we determine explicitly the modular Springer correspondence for exceptional types.
We construct a modular generalized Springer correspondence for any classical group, by generalizing to the modular setting various results of Lusztig in the case of characteristic-$0$ coefficients. We determine the cuspidal pairs in all classical types, and compute the correspondence explicitly for $mathrm{SL}(n)$ with coefficients of arbitrary characteristic and for $mathrm{SO}(n)$ and $mathrm{Sp}(2n)$ with characteristic-$2$ coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا