Do you want to publish a course? Click here

Segregation, precipitation, and alpha-alpha phase separation in Fe-Cr alloys: a multi-scale modelling approach

155   0   0.0 ( 0 )
 Added by Kalevi Kokko
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Segregation, precipitation, and phase separation in Fe-Cr systems is investigated. Monte Carlo simulations using semiempirical interatomic potential, first-principles total energy calculations, and experimental spectroscopy are used. In order to obtain a general picture of the relation of the atomic interactions and properties of Fe-Cr alloys in bulk, surface, and interface regions several complementary methods has to be used. Using Exact Muffin-Tin Orbitals method the effective chemical potential as a function of Cr content (0-15 at.% Cr) is calculated for a surface, second atomic layer and bulk. At ~10 at.% Cr in the alloy the reversal of the driving force of a Cr atom to occupy either bulk or surface sites is obtained. The Cr containing surfaces are expected when the Cr content exceeds ~10 at.%. The second atomic layer forms about 0.3 eV barrier for the migration of Cr atoms between bulk and surface atomic layer. To get information on Fe-Cr in larger scales we use semiempirical methods. Using combined Monte Carlo molecular dynamics simulations, based on semiempirical potential, the precipitation of Cr into isolated pockets in bulk Fe-Cr and the upper limit of the solubility of Cr into Fe layers in Fe/Cr layer system is studied. The theoretical predictions are tested using spectroscopic measurements. Hard X-ray photoelectron spectroscopy and Auger electron spectroscopy investigations were carried out to explore Cr segregation and precipitation in Fe/Cr double layer and Fe_0.95Cr_0.05 and Fe_0.85Cr_0.15 alloys. Initial oxidation of Fe-Cr was investigated experimentally at 10^-8 Torr pressure of the spectrometers showing intense Cr_2O_3 signal. Cr segregation and the formation of Cr rich precipitates were traced by analysing the experimental spectral intensities with respect to annealing time, Cr content, and kinetic energy of the exited electron.



rate research

Read More

Experimental investigation as well as theoretical calculations, of the Fe-partial phonon density-of-states (DOS) for nominally Fe_52.5Cr_47.5 alloy having (a) alpha- and (b) sigma-phase structure were carried out. The former at sector 3-ID of the Advanced Photon Source, using the method of nuclear resonant inelastic X-ray scattering, and the latter with the direct method [K. Parlinski et al., Phys. Rev. Lett. {78, 4063 (1997)]. The characteristic features of phonon DOS, which differentiate one phase from the other, were revealed and successfully reproduced by the theory. Various data pertinent to the dynamics such as Lamb-Mossbauer factor, f, kinetic energy per atom, E_k, and the mean force constant, D, were directly derived from the experiment and the theoretical calculations, while vibrational specific heat at constant volume, C_V, and vibrational entropy, S were calculated using the Fe-partial DOS. Using the values of f and C_V, we determined values for Debye temperatures, T_D. An excellent agreement for some quantities derived from experiment and first-principles theory, like C_V and quite good one for others like D and S was obtained.
Mechanism for acceleration of phase separation in Fe-base ternary alloys was investigated with use of a model based on the Cahn-Hilliard equation. Behavior of the minor element in an Fe-base ternary alloy along the trajectory of the peak of the major element is dependent on the sign of the second derivative of the chemical free energy with respect to the concentrations of the major and minor elements. However, the concentration of the major element along the trajectory of its peak top increases with time regardless of the sign of the second derivative of the chemical free energy. The addition of a substitutional element to an Fe-base binary alloy with composition within the spinodal region was found to accelerate phase separation
Nucleation and growth of Ti$_3$Al textalpha{}$_2$ ordered domains in textalpha{}-Ti--Al--X alloys were characterised using a combination of transmission electron microscopy, atom probe tomography and small angle X-ray scattering. Model alloys based on Ti--7Al~(wt.%) and containing O, V and Mo were aged at SI{550}{celsius} for times up to SI{120}{day} and the resulting precipitate dispersions were observed at intermediate points. Precipitates grew to around SI{30}{ anometre} in size, with a volume fraction of 6--10% depending on tertiary solutes. Interstitial O was found to increase the equilibrium volume fraction of textalpha{}$_2$, while V and Mo showed relatively little influence. Addition of any of the solutes in this study, but most prominently Mo, was found to increase nucleation density and decrease precipitate size and possibly coarsening rate. Coarsening can be described by the Lifshitz-Slyozov-Wagner model, suggesting a matrix diffusion-controlled coarsening mechanism (rather than control by interfacial coherency). Solutionising temperature was found to affect nucleation number density with an activation energy of $E_{mathrm{f}} = 1.5pm{}0.4$~eV, supporting the hypothesis that vacancy concentration affects textalpha{}$_2$ nucleation. The observation that all solutes increase nucleation number density is also consistent with a vacancy-controlled nucleation mechanism.
Anomalies in the temperature dependences of the recoil-free factor, f, and the average center shift, <CS>, measured by 57-Fe Mossbauer Spectroscopy, were observed for the first time in the archetype of the sigma-phase alloys system, Fe-Cr. In both cases the anomaly started at the temperature close to the magnetic ordering temperature, and in both cases it was indicative of lattice vibrations hardening. As no magnetostrictive effects were found, the anomalies seem to be entirely due to a spin-phonon coupling. The observed changes in f and in <CS> were expressed in terms of the underlying changes in the potential, Delta E_p, and the kinetic energy, Delta E_k, respectively. The former, with the maximum value larger by a factor of six than the latter, decreases, while the latter increases with T. The total mechanical energy change, Delta E, was, in general, not constant, as expected for the Debye-like vibrations, but it resembled that of Delta E_p. Only in the range of 4-15 K, Delta E was hardly dependent on T.
We here show by first principles theory that it is possible to achieve a structural and magnetic phase transition in common steel alloys like Fe$_{85}$Cr$_{15}$, by alloying with Ni or Mn. The predicted phase transition is from the ferromagnetic body centered cubic (bcc) phase to the paramagnetic face centered cubic (fcc) phase. The relatively high average magnetic moment of $sim1.4mu_{B}$/atom predicted at the transition suggests that stainless steel potentially can present a magnetocaloric effect strong enough to make these alloys good candidates for refrigeration applications operating at and around room temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا