Do you want to publish a course? Click here

Learning Instructor Intervention from MOOC Forums: Early Results and Issues

130   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

With large student enrollment, MOOC instructors face the unique challenge in deciding when to intervene in forum discussions with their limited bandwidth. We study this problem of instructor intervention. Using a large sample of forum data culled from 61 courses, we design a binary classifier to predict whether an instructor should intervene in a discussion thread or not. By incorporating novel information about a forums type into the classification process, we improve significantly over the previous state-of-the-art. We show how difficult this decision problem is in the real world by validating against indicative human judgment, and empirically show the problems sensitivity to instructors intervention preferences. We conclude this paper with our take on the future research issues in intervention.



rate research

Read More

Due to time constraints, course instructors often need to selectively participate in student discussion threads, due to their limited bandwidth and lopsided student--instructor ratio on online forums. We propose the first deep learning models for this binary prediction problem. We propose novel attention based models to infer the amount of latent context necessary to predict instructor intervention. Such models also allow themselves to be tuned to instructors preference to intervene early or late. Our three proposed attentive model variants to infer the latent context improve over the state-of-the-art by a significant, large margin of 11% in F1 and 10% in recall, on average. Further, introspection of attention help us better understand what aspects of a discussion post propagate through the discussion thread that prompts instructor intervention.
Social learning, i.e., students learning from each other through social interactions, has the potential to significantly scale up instruction in online education. In many cases, such as in massive open online courses (MOOCs), social learning is facilitated through discussion forums hosted by course providers. In this paper, we propose a probabilistic model for the process of learners posting on such forums, using point processes. Different from existing works, our method integrates topic modeling of the post text, timescale modeling of the decay in post activity over time, and learner topic interest modeling into a single model, and infers this information from user data. Our method also varies the excitation levels induced by posts according to the thread structure, to reflect typical notification settings in discussion forums. We experimentally validate the proposed model on three real-world MOOC datasets, with the largest one containing up to 6,000 learners making 40,000 posts in 5,000 threads. Results show that our model excels at thread recommendation, achieving significant improvement over a number of baselines, thus showing promise of being able to direct learners to threads that they are interested in more efficiently. Moreover, we demonstrate analytics that our model parameters can provide, such as the timescales of different topic categories in a course.
We tackle the prediction of instructor intervention in student posts from discussion forums in Massive Open Online Courses (MOOCs). Our key finding is that using automatically obtained discourse relations improves the prediction of when instructors intervene in student discussions, when compared with a state-of-the-art, feature-rich baseline. Our supervised classifier makes use of an automatic discourse parser which outputs Penn Discourse Treebank (PDTB) tags that represent in-post discourse features. We show PDTB relation-based features increase the robustness of the classifier and complement baseline features in recalling more diverse instructor intervention patterns. In comprehensive experiments over 14 MOOC offerings from several disciplines, the PDTB discourse features improve performance on average. The resultant models are less dependent on domain-specific vocabulary, allowing them to better generalize to new courses.
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppression and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AIs indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation.
This paper discusses the problem of lack of clear licensing and transparency of usage terms and conditions for research metadata. Making research data connected, discoverable and reusable are the key enablers of the new data revolution in research. We discuss how the lack of transparency hinders discovery of research data and make it disconnected from the publication and other trusted research outcomes. In addition, we discuss the application of Creative Commons licenses for research metadata, and provide some examples of the applicability of this approach to internationally known data infrastructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا