No Arabic abstract
Haplogroup N-M231 of human Y chromosome is a common clade from Eastern Asia to Northern Europe, being one of the most frequent haplogroups in Altaic and Uralic-speaking populations. Using newly discovered bi-allelic markers from high-throughput DNA sequencing, we largely improved the phylogeny of Haplogroup N, in which 16 subclades could be identified by 33 SNPs. More than 400 males belonging to Haplogroup N in 34 populations in China were successfully genotyped, and populations in Northern Asia and Eastern Europe were also compared together. We found that all the N samples were typed as inside either clade N1-F1206 (including former N1a-M128, N1b-P43 and N1c-M46 clades), most of which were found in Altaic, Uralic, Russian and Chinese-speaking populations, or N2-F2930, common in Tibeto-Burman and Chinese-speaking populations. Our detailed results suggest that Haplogroup N developed in the region of China since the final stage of late Paleolithic Era.
We study the genetic behaviour of a population formed by haploid individuals which reproduce asexually. The genetic information for each individual is stored along a bit-string (or chromosome) with L bits, where 0-bits represent the wild-type allele and 1-bits correspond to harmful mutations. Each newborn inherits this chromosome from its parent with some few random mutations: on average a fixed number m of bits are flipped. Selection is implemented according to the number N of 1-bits counted along the individuals chromosome: the smaller N the higher the probability an individual has to survive a new time step. Such a population evolves, with births and deaths, and its genetic distribution becomes stabilised after many enough generations have passed. The question we pose concerns the procedure of increasing L. The aim is to get the same distribution of relative genetic loads N/L among the equilibrated population, in spite of a larger L. Should we keep the same mutation rate m/L for different values of L? The answer is yes, which intuitively seems to be plausible. However, this conclusion is not trivial, according to our simulational results: the question involves also the population size.
All genes on the human Y-chromosome were studied using fractal dimension and Shannon entropy. Clear outlier clusters were identified. Among these were 6 sequences that have since been withdrawn as CDSs and 1 additional sequence that is not in the current assembly. A methodology for ranking the sequences based on deviation from average values of FD and SE was developed. The group of sequences scored among the 10% largest deviations had abnormally high likelihood to be from centromeric or pseudoautosomal regions and low likelihood to be from X-chromosome transposed regions. lncRNA sequences were also enriched among the outliers. In addition, the number of expressed genes previously identified for evolutionary study tended to not have large deviations from the average. Keywords: Y-chromosome; Shannon di-nucleotide entropy; fractal dimension; centromeric genes; gene degredation; lncRNA
Modern biological techniques such as Hi-C permit to measure probabilities that different chromosomal regions are close in space. These probabilities can be visualised as matrices called contact maps. In this paper, we introduce a multifractal analysis of chromosomal contact maps. Our analysis reveals that Hi-C maps are bifractal, i.e. complex geometrical objects characterized by two distinct fractal dimensions. To rationalize this observation, we introduce a model that describes chromosomes as a hierarchical set of nested domains and we solve it exactly. The predicted multifractal spectrum is in excellent quantitative agreement with experimental data. Moreover, we show that our theory yields to a more robust estimation of the scaling exponent of the contact probability than existing methods. By applying this method to experimental data, we detect subtle conformational changes among chromosomes during differentiation of human stem cells.
Demographic change of human populations is one of the central questions for delving into the past of human beings. To identify major population expansions related to male lineages, we sequenced 78 East Asian Y chromosomes at 3.9 Mbp of the non-recombining region (NRY), discovered >4,000 new SNPs, and identified many new clades. The relative divergence dates can be estimated much more precisely using molecular clock. We found that all the Paleolithic divergences were binary; however, three strong star-like Neolithic expansions at ~6 kya (thousand years ago) (assuming a constant substitution rate of 1e-9/bp/year) indicates that ~40% of modern Chinese are patrilineal descendants of only three super-grandfathers at that time. This observation suggests that the main patrilineal expansion in China occurred in the Neolithic Era and might be related to the development of agriculture.
Spatial structure is known to have an impact on the evolution of cooperation, and so it has been intensively studied during recent years. Previous work has shown the relevance of some features, such as the synchronicity of the updating, the clustering of the network or the influence of the update rule. This has been done, however, for concrete settings with particular games, networks and update rules, with the consequence that some contradictions have arisen and a general understanding of these topics is missing in the broader context of the space of 2x2 games. To address this issue, we have performed a systematic and exhaustive simulation in the different degrees of freedom of the problem. In some cases, we generalize previous knowledge to the broader context of our study and explain the apparent contradictions. In other cases, however, our conclusions refute what seems to be established opinions in the field, as for example the robustness of the effect of spatial structure against changes in the update rule, or offer new insights into the subject, e.g. the relation between the intensity of selection and the asymmetry between the effects on games with mixed equilibria.