Do you want to publish a course? Click here

Pascal (Yang Hui) triangles and power laws in the logistic map

124   0   0.0 ( 0 )
 Added by Alberto Robledo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic- band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties.



rate research

Read More

The delay logistic map with two types of q-deformations: Tsallis and Quantum-group type are studied. The stability of the map and its bifurcation scheme is analyzed as a function of the deformation and delay feedback parameters. Chaos is suppressed in a certain region of deformation and feedback parameter space. The steady state obtained by delay feedback is maintained in one type of deformation while chaotic behavior is recovered in another type with increasing delay.
For many driven-nonequilibrium systems, the probability distribution functions of magnitude and recurrence-time of large events follow a powerlaw indicating a strong temporal correlation. In this paper we argue why these probability distribution functions are ubiquitous in driven nonequilibrium systems, and we derive universal scaling laws connecting the magnitudes, recurrence-time, and spatial intervals of large events. The relationships between the scaling exponents have also been studied. We show that the ion-channel current in Voltage-dependent Anion Channels obeys the universal scaling law.
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable directions by translating the problem to the language of scale-invariant growing surfaces. We find that the so-called characteristic LVs exhibit spatial localization, strong clustering around given spatiotemporal loci, and remarkable dynamic scaling properties of the corresponding surfaces. In contrast, the commonly used backward LVs (obtained through Gram-Schmidt orthogonalization) spread all over the system and do not exhibit dynamic scaling due to artifacts in the dynamical correlations by construction.
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.
187 - L.Salari 2015
Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole real line which preserves distances except at a countable set of points. This property, which leads to vanishing Lyapunov exponents, is designed to mimic diffusion in non-chaotic polygonal billiards that give rise to normal and anomalous diffusion in a fully deterministic setting. As these billiards are typically too complicated to be analyzed from first principles, simplified models are needed to identify the minimal ingredients generating the different transport regimes. For our model, which we call the slicer map, we calculate all its moments in position analytically under variation of a single control parameter. We show that the slicer map exhibits a transition from subdiffusion over normal diffusion to superdiffusion under parameter variation. Our results may help to understand the delicate parameter dependence of the type of diffusion generated by polygonal billiards. We argue that in different parameter regions the transport properties of our simple model match to different classes of known stochastic processes. This may shed light on difficulties to match diffusion in polygonal billiards to a single anomalous stochastic process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا