No Arabic abstract
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.
We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LE) in such systems possesses a hierarchical structure, with different parts scaling with the different delays. This leads to different types of chaos, depending on the scaling of the maximal LE. Our results are relevant, in particular, for the synchronization properties of hierarchical networks (networks of networks) where the nodes of subnetworks are coupled with shorter delays and couplings between different subnetworks are realized with longer delay times. Units within a subnetwork can synchronize if the maximal exponent scales with the shorter delay, long range synchronization between different subnetworks is only possible if the maximal exponent scales with the long delay. The results are illustrated analytically for Bernoulli maps and numerically for tent maps.
Spectral properties of Coupled Map Lattices are described. Conditions for the stability of spatially homogeneous chaotic solutions are derived using linear stability analysis. Global stability analysis results are also presented. The analytical results are supplemented with numerical examples. The quadratic map is used for the site dynamics with different coupling schemes such as global coupling, nearest neighbor coupling, intermediate range coupling, random coupling, small world coupling and scale free coupling.
Networks of chaotic units with static couplings can synchronize to a common chaotic trajectory. The effect of dynamic adaptive couplings on the cooperative behavior of chaotic networks is investigated. The couplings adjust to the activities of its two units by two competing mechanisms: An exponential decrease of the coupling strength is compensated by an increase due to de-synchronized activity. This mechanism prevents the network from reaching a steady state. Numerical simulations of a coupled map lattice show chaotic trajectories of de-synchronized units interrupted by pulses of mutually synchronized clusters. These pulses occur on all scales, sometimes extending to the entire network. Clusters of synchronized units can be triggered by a small group of synchronized units.
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static and fluctuating networks, we find that random network alternations can enhance the synchronizability. Synchronized states appear to be maximally stable when fluctuations are much faster than the time-delay, even when the instantaneous state of the network does not allow synchronization. This enhancing effect disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, a desynchronizing resonance is reported. Moreover, we observe characteristic oscillations, with a periodicity related to the coupling delay, as the system approaches or drifts away from the synchronized state.
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchronization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.