Do you want to publish a course? Click here

Fluctuation Theory of Rashba Fermi Gases

377   0   0.0 ( 0 )
 Added by Vijay Shenoy B
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fermi gases with generalized Rashba spin orbit coupling inducedby a synthetic gauge field have the potential of realizing many interesting states such as rashbon condensates and topological phases. Here we develop a fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature ($T_c$) of a weakly attracting superfluid to the order of Fermi temperature, paving a pathway towards high $T_c$ superfluids.



rate research

Read More

Spin-orbit coupling is an important ingredient in many recently discovered phenomena such as the spin-Hall effect and topological insulators. Of particular interest is topological superconductivity, with its potential application in topological quantum computation. The absence of disorder in ultra-cold atomic systems makes them ideal for quantum computation applications, however, the spin-orbit (SO) coupling schemes proposed thus far are experimentally impractical owing to large spontaneous emission rates in the alkali fermions. In this paper, we develop a scheme to generate Rashba SO coupling with a low spontaneous emission extension to a recent experiment. We show that this scheme generates a Fermi surface spin texture for $^{40}rm{K}$ atoms, which is observable in time-of-flight measurements. The chiral spin texture, together with conventional $s$-wave interactions leads to topological superconductivity and non-Abelian Majorana quasiparticles.
A gas of interacting ultracold fermions can be tuned into a strongly interacting regime using a Feshbach resonance. Here we theoretically study quasiparticle transport in a system of two reservoirs of interacting ultracold fermions on the BCS side of the BCS-BEC crossover coupled weakly via a tunnel junction. Using the generalized BCS theory we calculate the time evolution of the system that is assumed to be initially prepared in a non-equilibrium state characterized by a particle number imbalance or a temperature imbalance. A number of characteristic features like sharp peaks in quasiparticle currents, or transitions between the normal and superconducting states are found. We discuss signatures of the Seebeck and the Peltier effect and the resulting temperature difference of the two reservoirs as a function of the interaction parameter $(k_Fa)^{-1}$. The Peltier effect may lead to an additional cooling mechanism for ultracold fermionic atoms.
In this letter, we investigate the fluctuation effects on the transport properties of unitary Fermi gases in the vicinity of the superfluid transition temperature $T_c$. Based on the time-dependent Ginzburg-Landau formalism of the BEC-BCS crossover, we investigate both the residual resistivity below $T_c$ induced by phase slips and the paraconductivity above $T_c$ due to pair fluctuations. These two effects have been well studied in the weak coupling BCS superconductor, and here we generalize them to the unitary regime of ultracold Fermi gases. We find that while the residual resistivity below $T_c$ increases as one approaches the unitary limit, consistent with recent experiments, the paraconductivity exhibits non-monotonic behavior. Our results can be verified with the recently developed transport apparatus using mesoscopic channels.
The realization of spin-orbit coupling (SOC) in ultracold atoms has triggered an intensive exploring of topological superfluids in the degenerate Fermi gases based on mean-field theory, which has not yet been reported in experiments. Here, we demonstrate the topological phase transitions in the system via the numerically exact quantum Monte Carlo method. Without prior assumptions, our unbiased real-space calculation shows that spin-orbit coupling can stabilize an unconventional pairing in the weak SOC regime, in which the Fulde-Ferrell-Larkin-Ovchinnikov pairing coexists with the Bardeen-Cooper-Schrieffer pairing. Furthermore, we use the jumps in the spin polarization at the time-reversal invariant momenta to qualify the topological phase transition, where we find the critical exponent deviated from the mean-field theory. Our results pave the way for the searching of unconventional pairing and topological superfluids with degenerate Fermi gases.
We demonstrate the existence of a collective excitation branch in the pair-breaking continuum of superfluid Fermi gases and BCS superconductors. At zero temperature, we analytically continue the equation on the collective mode energy in Andersons Random Phase Approximation or Gaussian fluctuations through its branch cut associated with the continuum, and obtain the full complex dispersion relation, including in the strong coupling regime. The branch exists as long as the chemical potential $mu$ is positive and the wave number below $sqrt{2mmu}/hbar$ (with m the fermion mass). In the long wavelength limit, the branch varies quadratically with the wave number, with a complex effective mass that we compute analytically for an arbitrary interaction strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا