No Arabic abstract
Gaussian distribution of a quantum state with continuous spectrum is known to maximize the Shannon entropy at a fixed variance. Applying it to a pair of canonically conjugate quantum observables $hat x$ and $hat p$, quantum entropic uncertainty relation can take a suggestive form, where the standard deviations $sigma_x$ and $sigma_p$ are featured explicitly. From the construction, it follows in a transparent manner that: (i) the entropic uncertainty relation implies the Kennard-Robertson uncertainty relation in a modifed form, $sigma_xsigma_pgeqhbar e^{cal N}/2$; (ii) the additional factor ${cal N}$ quantifies the quantum non-Gaussianity of the probability distributions of two observables; (iii) the lower bound of the entropic uncertainty relation for non-gaussian continuous variable (CV) mixed state becomes stronger with purity. Optimality of specific non-gaussian CV states to the refined uncertainty relation has been investigated and the existance of new class of CV quantum state is identified.
Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.
The uncertainty principle determines the distinction between the classical and quantum worlds. This principle states that it is not possible to measure two incompatible observables with the desired accuracy simultaneously. In quantum information theory, Shannon entropy has been used as an appropriate measure to express the uncertainty relation. According to the applications of entropic uncertainty relation, studying and trying to improve the bound of this relation is of great importance. Uncertainty bound can be altered by considering an extra quantum system as the quantum memory $B$ which is correlated with the measured quantum system $A$. One can extend the bipartite quantum memory assisted entropic uncertainty relation to tripartite quantum memory assisted entropic uncertainty relation in which the memory is split into two parts. In this work, we obtain a lower bound for the tripartite quantum memory assisted entropic uncertainty relation. Our lower bound has two additional terms compared to the lower bound in [Phys. Rev. Lett. 103, 020402 (2009)] which depending on the conditional von Neumann entropy, the Holevo quantity and mutual information. It is shown that the bound obtained in this work is more tighter than other bounds. In addition, using our lower bound, a lower bound for the quantum secret key rate has been obtained. The lower bound is also used to obtain the states for which the strong subadditivity inequality and Koashi-Winter inequality is satisfied with equality.
Non-Hermitian systems with exceptional points lead to many intriguing phenomena due to the coalescence of both eigenvalues and corresponding eigenvectors, in comparison to Hermitian systems where only eigenvalues degenerate. In this paper, we have investigated entropic uncertainty relation (EUR) in a non-Hermitian system and revealed a general connection between the EUR and the exceptional points of non-Hermitian system. Compared to the unitarity dynamics determined by a Hermitian Hamiltonian, the behaviors of EUR can be well defined in two different ways depending on whether the system is located in unbroken phase or broken phase regimes. In unbroken phase regime, EUR undergoes an oscillatory behavior while in broken phase regime where the oscillation of EUR breaks down. The exceptional points mark the oscillatory and non-oscillatory behaviors of the EUR. In the dynamical limit, we have identified the witness of critical behavior of non-Hermitian systems in terms of the EUR. Our results reveal that the witness can detect exactly the critical points of non-Hermitian systems beyond (anti-) PT-symmetric systems. Our results may have potential applications to witness and detect phase transition in non-Hermitian systems.
Entropic uncertainty is a well-known concept to formulate uncertainty relations for continuous variable quantum systems with finitely many degrees of freedom. Typically, the bounds of such relations scale with the number of oscillator modes, preventing a straight-forward generalization to quantum field theories. In this work, we overcome this difficulty by introducing the notion of a functional relative entropy and show that it has a meaningful field theory limit. We present the first entropic uncertainty relation for a scalar quantum field theory and exemplify its behavior by considering few particle excitations and the thermal state. Also, we show that the relation implies the Robertson-Schrodinger uncertainty relation.
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.