Do you want to publish a course? Click here

Relative entropic uncertainty relation

78   0   0.0 ( 0 )
 Added by Tobias Haas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measurement outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.



rate research

Read More

Entropic uncertainty is a well-known concept to formulate uncertainty relations for continuous variable quantum systems with finitely many degrees of freedom. Typically, the bounds of such relations scale with the number of oscillator modes, preventing a straight-forward generalization to quantum field theories. In this work, we overcome this difficulty by introducing the notion of a functional relative entropy and show that it has a meaningful field theory limit. We present the first entropic uncertainty relation for a scalar quantum field theory and exemplify its behavior by considering few particle excitations and the thermal state. Also, we show that the relation implies the Robertson-Schrodinger uncertainty relation.
We derive new inequalities for the probabilities of projective measurements in mutually unbiased bases of a qudit system. These inequalities lead to wider ranges of validity and tighter bounds on entropic uncertainty inequalities previously derived in the literature.
In the history of quantum mechanics, various types of uncertainty relationships have been introduced to accommodate different operational meanings of Heisenberg uncertainty principle. We derive an optimized entropic uncertainty relation (EUR) that quantifies an amount of quantum uncertainty in the scenario of successive measurements. The EUR characterizes the limitation in the measurability of two different quantities of a quantum state when they are measured through successive measurements. We find that the bound quantifies the information between the two measurements and imposes a condition that is consistent with the recently-derived error-disturbance relationship.
The uncertainty principle determines the distinction between the classical and quantum worlds. This principle states that it is not possible to measure two incompatible observables with the desired accuracy simultaneously. In quantum information theory, Shannon entropy has been used as an appropriate measure to express the uncertainty relation. According to the applications of entropic uncertainty relation, studying and trying to improve the bound of this relation is of great importance. Uncertainty bound can be altered by considering an extra quantum system as the quantum memory $B$ which is correlated with the measured quantum system $A$. One can extend the bipartite quantum memory assisted entropic uncertainty relation to tripartite quantum memory assisted entropic uncertainty relation in which the memory is split into two parts. In this work, we obtain a lower bound for the tripartite quantum memory assisted entropic uncertainty relation. Our lower bound has two additional terms compared to the lower bound in [Phys. Rev. Lett. 103, 020402 (2009)] which depending on the conditional von Neumann entropy, the Holevo quantity and mutual information. It is shown that the bound obtained in this work is more tighter than other bounds. In addition, using our lower bound, a lower bound for the quantum secret key rate has been obtained. The lower bound is also used to obtain the states for which the strong subadditivity inequality and Koashi-Winter inequality is satisfied with equality.
63 - Pouria Pedram 2016
In the framework of the generalized uncertainty principle, the position and momentum operators obey the modified commutation relation $[X,P]=ihbarleft(1+beta P^2right)$ where $beta$ is the deformation parameter. Since the validity of the uncertainty relation for the Shannon entropies proposed by Beckner, Bialynicki-Birula, and Mycieslki (BBM) depends on both the algebra and the used representation, we show that using the formally self-adjoint representation, i.e., $X=x$ and $P=tanleft(sqrt{beta}pright)/sqrt{beta}$ where $[x,p]=ihbar$, the BBM inequality is still valid in the form $S_x+S_pgeq1+lnpi$ as well as in ordinary quantum mechanics. We explicitly indicate this result for the harmonic oscillator in the presence of the minimal length.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا