Do you want to publish a course? Click here

Probing two-particle exchange processes in two-mode Bose-Einstein condensates

159   0   0.0 ( 0 )
 Added by Luis Benet
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the fidelity decay and its freeze for an initial coherent state of two-mode Bose-Einstein condensates in the Fock regime considering a Bose-Hubbard model that includes two-particle tunneling terms. By using linear-response theory we find scaling properties of the fidelity as a function of the particle number that prove the existence of two-particle mode-exchange when a non-degeneracy condition is fulfilled. Tuning the energy difference of the two modes serves to distinguish the presence of two-particle mode-exchange terms through the appearance of certain singularities. Numerical results confirm our findings. Experimental verification of our findings could improve cold atom interferometry.



rate research

Read More

128 - A.V. Balatsky 2014
We introduce the concept of the {em odd-frequency} Bose Einstein Condensate (BEC), characterized by the odd frequency/time two-boson expectation value. To illustrate the concept of odd frequency BEC we present simple classification of pair boson condensates that explicitly permits this state. We point qualitative differences of odd-frequency BEC with conventional BEC and introduce the order parameter and wave function for the odd-frequency BEC.
We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimensionless parameter, the Mach number at T = 0, that tunes different regimes of stability. We also estimate the magnitude of the main parameters at which two-stream instability is expected to be observed under typical experimental conditions.
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferometric technique we developed, and as such, fully characterise the magnetic solitons while they undergo oscillatory motion in the trap. Magnetic solitons exhibit non-dispersive, dissipationless long-time dynamics. By imprinting multiple magnetic solitons in our ultracold gas sample, we engineer binary collisions between solitons of either same or opposite magnetisation and map out their trajectories.
We have observed interference between two Bose-Einstein condensates of weakly bound Feshbach molecules of fermionic $^6$Li atoms. Two condensates are prepared in a double-well trap and, after release from this trap, overlap in expansion. We detect a clear interference pattern that unambiguously demonstrates the de Broglie wavelength of molecules. We verify that only the condensate fraction shows interference. For increasing interaction strength, the pattern vanishes because elastic collisions during overlap remove particles from the condensate wave function. For strong interaction the condensates do not penetrate each other as they collide hydrodynamically.
We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished either through population oscillations, or the motion of spatial density fringes. We explicitly include the effect of interactions via a mean-field description, and study the fidelity of the dynamics relative to an ideal configuration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا