Do you want to publish a course? Click here

Two-stream instability in quasi-one-dimensional Bose-Einstein condensates

207   0   0.0 ( 0 )
 Added by Hugo Ter\\c{c}as
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply a kinetic model to predict the existence of an instability mechanism in elongated Bose-Einstein condensates. Our kinetic description, based on the Wigner formalism, is employed to highlight the existence of unstable Bogoliubov waves that may be excited in the counterpropagation configuration. We identify a dimensionless parameter, the Mach number at T = 0, that tunes different regimes of stability. We also estimate the magnitude of the main parameters at which two-stream instability is expected to be observed under typical experimental conditions.



rate research

Read More

We theoretically investigate the dynamics of modulation instability (MI) in two-dimensional spin-orbit coupled Bose-Einstein condensates (BECs). The analysis is performed for equal densities of pseudo-spin components. Different combination of the signs of intra- and inter-component interaction strengths are considered, with a particular emphasize on repulsive interactions. We observe that the unstable modulation builds from originally miscible condensates, depending on the combination of the signs of the intra- and inter-component interaction strengths. The repulsive intra- and inter-component interactions admit instability and the MI immiscibility condition is no longer significant. Influence of interaction parameters such as spin-orbit and Rabi coupling on MI are also investigated. The spin-orbit coupling (SOC) inevitably contributes to instability regardless of the nature of the interaction. In the case of attractive interaction, SOC manifest in enhancing the MI. Thus, a comprehensive study of MI in two-dimensional spin-orbit coupled binary BECs of pseudo-spin components is presented.
Ultracold dipolar droplets have been realized in a series of ground-breaking experiments, where the stability of the droplet state is attributed to beyond-mean-field effects in the form of the celebrated Lee-Huang-Yang (LHY) correction. We scrutinize the dipolar droplet states in a one-dimensional context using a combination of analytical and numerical approaches, and identify experimentally viable parameters for accessing our findings for future experiments. In particular we identify regimes of stability in the restricted geometry, finding multiple roton instabilities as well as regions supporting quasi-one-dimensional droplet states. By applying an interaction quench to the droplet, a modulational instability is induced and multiple droplets are produced, along with bright solitons and atomic radiation. We also assess the droplets robustness to collisions, revealing population transfer and droplet fission.
204 - R. Nath , P. Pedri , L. Santos 2008
The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar condensates, which is followed by collapse in three-dimensional geometries. We show that the nature of this instability is fundamentally different in two-dimensional condensates, due to the dipole-induced stabilization of two-dimensional bright solitons. As a consequence, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of an harmonic confinement, the instability leads to transient pattern formation followed by the creation of stable two-dimensional solitons. This dynamics should be observable in on-going experiments, allowing for the creation of stable two-dimensional solitons for the first time ever in quantum gases.
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condensate loaded into a translating optical lattice by observing its dynamical stability, and develop an effective band structure that provides a theoretical understanding of the locations of the band edges. This system presents exciting new opportunities for engineering condensed-matter analogs using the flexible toolbox of ultra-cold quantum gases.
140 - Lin Wen , Q. Sun , Yu Chen 2016
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of solitons is governed by a nonlinear Bloch equation. The spin dynamics influences the orbital motion of the solitons leading to the spin-orbit effects in the dynamics of the macroscopic quantum objects (mean-field solitons). The latter perform oscillations with a frequency determined by the SOC, Raman coupling, and intrinsic nonlinearity. These findings reveal unique features of solitons affected by the SOC, which is confirmed by analytical considerations and numerical simulations of the underlying Gross-Pitaevskii equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا