No Arabic abstract
Feature selection and feature transformation, the two main ways to reduce dimensionality, are often presented separately. In this paper, a feature selection method is proposed by combining the popular transformation based dimensionality reduction method Linear Discriminant Analysis (LDA) and sparsity regularization. We impose row sparsity on the transformation matrix of LDA through ${ell}_{2,1}$-norm regularization to achieve feature selection, and the resultant formulation optimizes for selecting the most discriminative features and removing the redundant ones simultaneously. The formulation is extended to the ${ell}_{2,p}$-norm regularized case: which is more likely to offer better sparsity when $0<p<1$. Thus the formulation is a better approximation to the feature selection problem. An efficient algorithm is developed to solve the ${ell}_{2,p}$-norm based optimization problem and it is proved that the algorithm converges when $0<ple 2$. Systematical experiments are conducted to understand the work of the proposed method. Promising experimental results on various types of real-world data sets demonstrate the effectiveness of our algorithm.
Recent non-linear feature selection approaches employing greedy optimisation of Centred Kernel Target Alignment(KTA) exhibit strong results in terms of generalisation accuracy and sparsity. However, they are computationally prohibitive for large datasets. We propose randSel, a randomised feature selection algorithm, with attractive scaling properties. Our theoretical analysis of randSel provides strong probabilistic guarantees for correct identification of relevant features. RandSels characteristics make it an ideal candidate for identifying informative learned representations. Weve conducted experimentation to establish the performance of this approach, and present encouraging results, including a 3rd position result in the recent ICML black box learning challenge as well as competitive results for signal peptide prediction, an important problem in bioinformatics.
Feature selection in learning to rank has recently emerged as a crucial issue. Whereas several preprocessing approaches have been proposed, only a few works have been focused on integrating the feature selection into the learning process. In this work, we propose a general framework for feature selection in learning to rank using SVM with a sparse regularization term. We investigate both classical convex regularizations such as $ell_1$ or weighted $ell_1$ and non-convex regularization terms such as log penalty, Minimax Concave Penalty (MCP) or $ell_p$ pseudo norm with $ptextless{}1$. Two algorithms are proposed, first an accelerated proximal approach for solving the convex problems, second a reweighted $ell_1$ scheme to address the non-convex regularizations. We conduct intensive experiments on nine datasets from Letor 3.0 and Letor 4.0 corpora. Numerical results show that the use of non-convex regularizations we propose leads to more sparsity in the resulting models while prediction performance is preserved. The number of features is decreased by up to a factor of six compared to the $ell_1$ regularization. In addition, the software is publicly available on the web.
Deep convolutional networks have proven to be very successful in learning task specific features that allow for unprecedented performance on various computer vision tasks. Training of such networks follows mostly the supervised learning paradigm, where sufficiently many input-output pairs are required for training. Acquisition of large training sets is one of the key challenges, when approaching a new task. In this paper, we aim for generic feature learning and present an approach for training a convolutional network using only unlabeled data. To this end, we train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled seed image patch. In contrast to supervised network training, the resulting feature representation is not class specific. It rather provides robustness to the transformations that have been applied during training. This generic feature representation allows for classification results that outperform the state of the art for unsupervised learning on several popular datasets (STL-10, CIFAR-10, Caltech-101, Caltech-256). While such generic features cannot compete with class specific features from supervised training on a classification task, we show that they are advantageous on geometric matching problems, where they also outperform the SIFT descriptor.
In many high dimensional classification or regression problems set in a biological context, the complete identification of the set of informative features is often as important as predictive accuracy, since this can provide mechanistic insight and conceptual understanding. Lasso and related algorithms have been widely used since their sparse solutions naturally identify a set of informative features. However, Lasso performs erratically when features are correlated. This limits the use of such algorithms in biological problems, where features such as genes often work together in pathways, leading to sets of highly correlated features. In this paper, we examine the performance of a Lasso derivative, the exclusive group Lasso, in this setting. We propose fast algorithms to solve the exclusive group Lasso, and introduce a solution to the case when the underlying group structure is unknown. The solution combines stability selection with random group allocation and introduction of artificial features. Experiments with both synthetic and real-world data highlight the advantages of this proposed methodology over Lasso in comprehensive selection of informative features.
Due to the rapid advancements of sensory and computing technology, multi-modal data sources that represent the same pattern or phenomenon have attracted growing attention. As a result, finding means to explore useful information from these multi-modal data sources has quickly become a necessity. In this paper, a discriminative vectorial framework is proposed for multi-modal feature representation in knowledge discovery by employing multi-modal hashing (MH) and discriminative correlation maximization (DCM) analysis. Specifically, the proposed framework is capable of minimizing the semantic similarity among different modalities by MH and exacting intrinsic discriminative representations across multiple data sources by DCM analysis jointly, enabling a novel vectorial framework of multi-modal feature representation. Moreover, the proposed feature representation strategy is analyzed and further optimized based on canonical and non-canonical cases, respectively. Consequently, the generated feature representation leads to effective utilization of the input data sources of high quality, producing improved, sometimes quite impressive, results in various applications. The effectiveness and generality of the proposed framework are demonstrated by utilizing classical features and deep neural network (DNN) based features with applications to image and multimedia analysis and recognition tasks, including data visualization, face recognition, object recognition; cross-modal (text-image) recognition and audio emotion recognition. Experimental results show that the proposed solutions are superior to state-of-the-art statistical machine learning (SML) and DNN algorithms.