No Arabic abstract
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: ($i$) an $in:situ$ hydrogen-Si $(001)$ passivation and ($ii$) the application of oxygen-protective Eu monolayers --- without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si $(001)$ in order to create a strong spin filter contact to silicon.
Spin transfer torques allow for electrical manipulation of magnetization at room temperature, which is utilized to build future electronic devices such as spin transfer torque memories. Recent experiments have discovered that the combination of the spin transfer torque with the spin Hall effect enables more efficient manipulation. A versatile control mechanism of such spin-orbit torques is beneficial to envision device applications with competitive advantages over the existing schemes. Here we report that the oxidation manipulation of spin-orbit torque devices triggers a new mechanism, and the resulting torques are estimated to be about two times stronger than that of the spin Hall effect. Our result introduces an entirely new way to engineer the spin-orbit torques for device operation via oxygen manipulation. Combined with electrical gating for the control of the oxygen content, our finding may also pave the way for towards reconfigurable logic devices.
The conductance of C60 on Cu(100) is investigated with a low-temperature scanning tunneling microscope. At the transition from tunneling to the contact regime the conductance of C60 adsorbed with a pentagon-hexagon bond rises rapidly to 0.25 conductance quanta G0. An abrupt conductance jump to G0 is observed upon further decreasing the distance between the instruments tip and the surface. Ab-initio calculations within density functional theory and non-equilibrium Greens function techniques explain the experimental data in terms of the conductance of an essentially undeformed C60. From a detailed analysis of the crossover from tunneling to contact we conclude that the conductance in this region is strongly affected by structural fluctuations which modulate the tip-molecule distance.
Ferroelectric Rashba semiconductors (FERSC), in which Rashba spin-splitting can be controlled and reversed by an electric field, have recently emerged as a new class of functional materials useful for spintronic applications. The development of concrete devices based on such materials is, however, still hampered by the lack of robust FERSC compounds. Here, we show that the coexistence of large spontaneous polarisation and sizeable spin-orbit coupling is not sufficient to have strong Rashba effects and clarify why simple ferroelectric oxide perovskites with transition metal at the B-site are typically not suitable FERSC candidates. By rationalizing how this limitation can be by-passed through band engineering of the electronic structure in layered perovskites, we identify the Bi$_2$WO$_6$ Aurivillius crystal as the first robust ferroelectric with large and reversible Rashba spin-splitting, that can even be substantially doped without losing its ferroelectric properties. Importantly, we highlight that a unidirectional spin-orbit field arises in layered Bi$_2$WO$_6$, resulting in a protection against spin-decoherence.We highlight moreover that a unidirectional spin-orbit field arises in Bi$_2$WO$_6$, in which the spin-texture is so protected against spin-decoherence.
Ferromagnetic metal-organic semiconductor (FM-OSC) hybrid interfaces have shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) is introduced as an interfacial layer in Co-OSCs heterojunction with an aim to tune the spin injection. The Co/TNAP interface is investigated by use of X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), near edge X-ray absorption fine structure (NEXAFS) and X-ray magnetic circular dichroism (XMCD). Hybrid interface states (HIS) are observed at Co/TNAP interface resulting from chemical interaction between Co and TNAP. The energy level alignment at Co/TNAP/OSCs interface is also obtained, and a reduction of the hole injection barrier is demonstrated. XMCD results confirm sizeable spin polarization at the Co/TNAP hybrid interface.
Spin-orbit torque facilitates efficient magnetization switching via an in-plane current in perpendicularly magnetized heavy metal/ferromagnet heterostructures. The efficiency of spin-orbit-torque-induced switching is determined by the charge-to-spin conversion arising from either bulk or interfacial spin-orbit interactions, or both. Here, we demonstrate that the spin-orbit torque and the resultant switching efficiency in Pt/CoFeB systems are significantly enhanced by an interfacial modification involving Ti insertion between the Pt and CoFeB layers. Spin pumping and X-ray magnetic circular dichroism experiments reveal that this enhancement is due to an additional interface-generated spin current of the nonmagnetic interface and/or improved spin transparency achieved by suppressing the proximity-induced moment in the Pt layer. Our results demonstrate that interface engineering affords an effective approach to improve spin-orbit torque and thereby magnetization switching efficiency.