Do you want to publish a course? Click here

Self-similar Evaporation and Collapse in the Quantum Portrait of Black Holes

111   0   0.0 ( 0 )
 Added by Nico Wintergerst
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate Hawking evaporation in a recently suggested picture in which black holes are Bose condensates of gravitons at a quantum critical point. There, evaporation of a black hole is due to two intertwined effects. Coherent excitation of a tachyonic breathing mode is responsible for the collapse of the condensate, while incoherent scattering of gravitons leads to Hawking radiation. To explore this, we consider a toy model of a single bosonic degree of freedom with derivative self-interactions. We consider the real-time evolution of a condensate and derive evaporation laws for two possible decay mechanisms in the Schwinger-Keldysh formalism. We show that semiclassical results can be reproduced if the decay is due to an effective two-body process, while the existence of a three-body channel would imply very short lifetimes for the condensate. In either case, we uncover the existence of scaling solutions in which the condensate is at a critical point throughout the collapse. In the case of a two-body decay we moreover discover solutions that exhibit the kind of instability that was recently conjectured to be responsible for fast scrambling.



rate research

Read More

It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.
Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross section of strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission at the Hawking temperature T_{sem} in the early evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T_ s at the last stages. New bounds on the angular momentum J and charge Q emerge in the quantum string regime. The last state of evaporation of a semiclassical KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a quantum string into all kinds of particles.(There is naturally, no loss of information, (no paradox at all)). We compute the microscopic string entropy S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we find for high j, (extremal string states) a new phase transition at a temperature T_{sj} higher than T_s. We find a new formula for the Kerr black hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy . For high angular momentum, (extremal J = GM^2/c), a gravitational phase transition operates and the whole entropy S_{sem} is drastically different from the Bekenstein-Hawking entropy. This new extremal black hole transition occurs at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.
An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For $dS$ background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.
We compute the albedo (or reflectivity) of electromagnetic waves off the electron-positron Hawking plasma that surrounds the horizon of a Quantum Black Hole. We adopt the modified firewall conjecture for fuzzballs [arXiv:hep-th/0502050,arXiv:1711.01617], where we consider significant electromagnetic interaction around the horizon. While prior work has treated this problem as an electron-photon scattering process, we find that the incoming quanta interact collectively with the fermionic excitations of the Hawking plasma at low energies. We derive this via two different methods: one using relativistic plasma dispersion relation, and another using the one-loop correction to photon propagator. Both methods find that the reflectivity of long wavelength photons off the Hawking plasma is significant, contrary to previous claims. This leads to the enhancement of the electromagnetic albedo for frequencies comparable to the Hawking temperature of black hole horizons in vacuum. We comment on possible observable consequences of this effect.
We consider a quantum analogue of black holes and white holes using Bose-Einstein condensates. The model is described by the nonlinear Schrodinger equation with a stream flow potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا