Do you want to publish a course? Click here

Spitzer UltRa Faint SUrvey Program (SURFS UP). II. IRAC-Detected Lyman-Break Galaxies at 6 < z < 10 Behind Strong-Lensing Clusters

197   0   0.0 ( 0 )
 Added by Kuang-Han Huang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the stellar population properties of the IRAC-detected $6 lesssim z lesssim 10$ galaxy candidates from the Spitzer UltRa Faint SUrvey Program (SURFS UP). Using the Lyman Break selection technique, we find a total of 16 new galaxy candidates at $6 lesssim z lesssim 10$ with $S/N geq 3$ in at least one of the IRAC $3.6mu$m and $4.5mu$m bands. According to the best mass models available for the surveyed galaxy clusters, these IRAC-detected galaxy candidates are magnified by factors of $sim 1.2$--$5.5$. We find that the IRAC-detected $6 lesssim z lesssim 10$ sample is likely not a homogeneous galaxy population: some are relatively massive (stellar mass as high as $4 times 10^9,M_{odot}$) and evolved (age $lesssim 500$ Myr) galaxies, while others are less massive ($M_{text{stellar}}sim 10^8,M_{odot}$) and very young ($sim 10$ Myr) galaxies with strong nebular emission lines that boost their rest-frame optical fluxes. We identify two Ly$alpha$ emitters in our sample from the Keck DEIMOS spectra, one at $z_{text{Ly}alpha}=6.76$ (in RXJ1347) and one at $z_{text{Ly}alpha}=6.32$ (in MACS0454). We show that IRAC $[3.6]-[4.5]$ color, when combined with photometric redshift, can be used to identify galaxies likely with strong nebular emission lines within certain redshift windows.



rate research

Read More

SURFSUP is a joint Spitzer and HST Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z >~ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest frame optical light, which only Spitzer can probe for sources at z >~ 7, for a large enough sample of typical galaxies. Our program consists of 550 hours of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ~30 hours exposure time in both 3.6$mu$m and 4.5$mu$m in the central 4 arcmin x 4 arcmin field and ~15 hours in the flanking fields. This results in 3-$sigma$ sensitivity limits of ~26.6 and ~26.2AB magnitudes for the central field in the IRAC 3.6 and 4.5$mu$m bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z >~ 7 sources (using a z=9.5 galaxy behind MACSJ1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical PSF models. In the future we plan to release these data products for the entire survey.
We present Spitzer/IRAC observations of nine $z$-band dropouts highly magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ~30 hr per IRAC band. We detect (>3sigma) in both IRAC bands the brightest of these high-redshift galaxies, with [3.6]=23.80+-0.28 mag, [4.5]=23.78+-0.25 mag, and (H-[3.6])=1.17+-0.32 mag. The remaining eight galaxies are undetected to [3.6]~26.4 mag and [4.5]~26.0 mag with stellar masses of ~5x10^7 M_sol. The detected galaxy has an estimated magnification of mu=12+-4, which implies this galaxy has an ultraviolet luminosity of L_1500~0.3 L*_{z=7} --- the lowest luminosity individual source detected in IRAC at z>7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star-formation rate of SFR~1.3 M_sol/yr and stellar mass of M~2x10^9 M_sol, which gives a specific star-formation rate of sSFR~0.7 Gyr^-1. If this galaxy had sustained this star-formation rate since z~20, it could have formed the observed stellar mass (to within a factor of ~2), we also discuss alternate star-formation histories and argue the exponentially-increasing model is unlikely. Finally, based on the intrinsic star-formation rate, we estimate this galaxy has a likely [C II] flux of <f_[C II]> = 10^{-17} erg/s/cm2.
We present a statistical detection of 1.5 GHz radio continuum emission from a sample of faint z~4 Lyman-break galaxies (LBGs). LBGs are key tracers of the high-redshift star formation history and important sources of UV photons that ionized the intergalactic medium in the early universe. In order to better constrain the extinction and intrinsic star formation rate (SFR) of high-redshift LBGs, we combine the latest ultradeep Karl G. Jansky Very Large Array 1.5 GHz radio image and the Hubble Space Telescope Advance Camera for Surveys (ACS) optical images in the Great Observatories Origins Deep Survey-North. We select a large sample of 1771 z~4 LBGs from the ACS catalogue using $bband$-dropout color criteria. Our LBG samples have $iband$~25-28 (AB), ~0-3 magnitudes fainter than M*_UV at z~4. In our stacked radio images, we find the LBGs to be point-like under our 2 angular resolution. We measure their mean 1.5 GHz flux by stacking the measurements on the individual objects. We achieve a statistical detection of $S_{1.5GHz}$=0.210+-0.075 uJy at ~3 sigma, first time on such a faint LBG population at z~4. The measurement takes into account the effects of source size and blending of multiple objects. The detection is visually confirmed by stacking the radio images of the LBGs, and the uncertainty is quantified with Monte Carlo simulations on the radio image. The stacked radio flux corresponds to an intrinsic SFR of 16.0+-5.7 M/yr, which is 2.8X the SFR derived from the rest-frame UV continuum luminosity. This factor of 2.8 is in excellent agreement with the extinction correction derived from the observed UV continuum spectral slope, using the local calibration of meurer99. This result supports the use of the local calibration on high-redshift LBGs for deriving the extinction correction and SFR, and also disfavors a steep reddening curve such as that of the Small Magellanic Cloud.
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.
Aims. The aim of this work is to constrain the evolution of the fraction of Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure the stellar escape fraction of Lya photons over the same redshift range. Methods. We exploit the ultradeep spectroscopic observations collected by the VIMOS Ultra Deep Survey (VUDS) to build an unique, complete and unbiased sample of 4000 spectroscopically confirmed star forming galaxies at 2<z<6. Our galaxy sample UV luminosities brighter than M* at 2<z<6, and luminosities down to one magnitude fainter than M* at 2<z<3.5. Results. We find that 80% of the star forming galaxies in our sample have EW0(Lya)<10A, and correspondingly fesc(Lya)<1%. By comparing these results with literature, we conclude that the bulk of the Lya luminosity at 2<z<6 comes from galaxies that are fainter in the UV than those we sample in this work. The strong Lya emitters constitute, at each redshift, the tail of the distribution of the galaxies with extreme EW0(Lya) and fesc(Lya) . This tail of large EW0 and fesc(Lya) becomes more important as the redshift increases, and causes the fraction of Lya with EW0> 25A to increase from 5% at z=2 to 30% at z=6, with the increase being relatively stronger beyond z=4. We observe no difference, for the narrow range of UV luminosities explored in this work, between the fraction of strong Lya emitters among galaxies fainter or brighter than M*, although the fraction for the FUV faint galaxies evolves faster, at 2<z<3.5, than for the bright ones. We do observe an anticorrelation between E(B-V) and fesc(Lya): generally galaxies with high fesc(Lya) have also small amounts of dust (and viceversa). However, when the dust content is low (E(B-V)<0.05) we observe a very broad range of fesc(Lya), ranging from 10^-3 to 1. This implies that the dust alone is not the only regulator of the amount of escaping Lya photons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا