Do you want to publish a course? Click here

Nonlinear light propagation in cholesteric liquid crystals with a helical Bragg microstructure

176   0   0.0 ( 0 )
 Added by Fu Shenhe
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonlinear optical propagation in cholesteric liquid crystals (CLC) with a spatially periodic helical molecular structure is studied experimentally and modeled numerically. This periodic structure can be seen as a Bragg grating with a propagation stopband for circularly polarized light. The CLC nonlinearity can be strengthened by adding absorption dye, thus reducing the nonlinear intensity threshold and the necessary propagation length. As the input power increases, a blue shift of the stopband is induced by the self-defocusing nonlinearity, leading to a substantial enhancement of the transmission and spreading of the beam. With further increase of the input power, the self-defocusing nonlinearity saturates, and the beam propagates as in the linear-diffraction regime. A system of nonlinear couple-mode equations is used to describe the propagation of the beam. Numerical results agree well with the experiment findings, suggesting that modulation of intensity and spatial profile of the beam can be achieved simultaneously under low input intensities in a compact CLC-based micro-device.



rate research

Read More

In the present paper, we investigate the polarization properties of the cholesteric liquid crystals (CLCs) with an isotropic/anisotropic defect inside them. Possibilities of amplification of the polarization plane rotation and stabilization of the light polarization azimuth by these systems are investigated in details.
The band structure of photons in cholesteric liquid crystals (CLCs) is investigated in the shortwave approximation. The bound states or narrow resonances of photons in the CLC are formed by the extraordinary waves. The explicit expressions for the spectrum bands and the dispersion laws of photons in these bands are obtained. It is shown that these states describe photons propagating almost perpendicular to the CLC axis. The density of photon states acquires a sharp peak due to the presence of bound states. Near this peak, in the particular case of plasma permittivity, the photons posses a linear or quadratic dispersion relations in the directions perpendicular to the CLC axis depending on the sign of the anisotropy of the CLC permittivity tensor. The resonances in the CLC plate are also described.
We present a formalism able to predict the transformation of light beams passing through biaxial crystals. We use this formalism to show both theoretically and experimentally the transition from double refraction to conical refraction, which is found when light propagates along one of the optic axes of a biaxial crystal. Additionally, we demonstrate that the theory is applicable both to non-cylindrically symmetric and non-homogeneously polarized beams by predicting the transformation of input beams passing through a cascade of biaxial crystals.
Thanks to their unique properties, nematic liquid crystals feature a variety of mechanisms for light-matter interactions. For continuous-wave optical excitations, the two dominant contributions stem from reorientational and thermal nonlinearities. We thoroughly analyze the competing roles of these two nonlinear responses with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells and continuous-wave beams at two distinct wavelengths in order to adjust the relative weights of the two responses. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation and compared to experimental results.
Berry phase is revealed for circularly polarized light when it is Bragg-reflected by a chiral liquid crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, then, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا