Do you want to publish a course? Click here

New Unconditional Hardness Results for Dynamic and Online Problems

186   0   0.0 ( 0 )
 Added by Kasper Green Larsen
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

There has been a resurgence of interest in lower bounds whose truth rests on the conjectured hardness of well known computational problems. These conditional lower bounds have become important and popular due to the painfully slow progress on proving strong unconditional lower bounds. Nevertheless, the long term goal is to replace these conditional bounds with unconditional ones. In this paper we make progress in this direction by studying the cell probe complexity of two conjectured to be hard problems of particular importance: matrix-vector multiplication and a version of dynamic set disjointness known as Patrascus Multiphase Problem. We give improved unconditional lower bounds for these problems as well as introducing new proof techniques of independent interest. These include a technique capable of proving strong threshold lower bounds of the following form: If we insist on having a very fast query time, then the update time has to be slow enough to compute a lookup table with the answer to every possible query. This is the first time a lower bound of this type has been proven.



rate research

Read More

The minimum linear ordering problem (MLOP) seeks to minimize an aggregated cost $f(cdot)$ due to an ordering $sigma$ of the items (say $[n]$), i.e., $min_{sigma} sum_{iin [n]} f(E_{i,sigma})$, where $E_{i,sigma}$ is the set of items that are mapped by $sigma$ to indices at most $i$. This problem has been studied in the literature for various special cases of the cost function $f$, and in a general setting for a submodular or supermodular cost $f$ [ITT2012]. Though MLOP was known to be NP-hard for general submodular functions, it was unknown whether the special case of graphic matroid MLOP (with $f$ being the matroid rank function of a graph) was polynomial-time solvable. Following this motivation, we explore related classes of linear ordering problems, including symmetric submodular MLOP, minimum latency vertex cover, and minimum sum vertex cover. We show that the most special cases of our problem, graphic matroid MLOP and minimum latency vertex cover, are both NP-hard. We further expand the toolkit for approximating MLOP variants: using the theory of principal partitions, we show a $2-frac{1+ell_{f}}{1+|E|}$ approximation to monotone submodular MLOP, where $ell_{f}=frac{f(E)}{max_{xin E}f({x})}$ satisfies $1 leq ell_f leq |E|$. Thus our result improves upon the best known bound of $2-frac{2}{1+|E|}$ by Iwata, Tetali, and Tripathi [ITT2012]. This leads to a $2-frac{1+r(E)}{1+|E|}$ approximation for the matroid MLOP, corresponding to the case when $r$ is the rank function of a given matroid. Finally, we show that MLVC can be $4/3$ approximated, matching the integrality gap of its vanilla LP relaxation.
In the classical Node-Disjoint Paths (NDP) problem, the input consists of an undirected $n$-vertex graph $G$, and a collection $mathcal{M}={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of its vertices, called source-destination, or demand, pairs. The goal is to route the largest possible number of the demand pairs via node-disjoint paths. The best current approximation for the problem is achieved by a simple greedy algorithm, whose approximation factor is $O(sqrt n)$, while the best current negative result is an $Omega(log^{1/2-delta}n)$-hardness of approximation for any constant $delta$, under standard complexity assumptions. Even seemingly simple special cases of the problem are still poorly understood: when the input graph is a grid, the best current algorithm achieves an $tilde O(n^{1/4})$-approximation, and when it is a general planar graph, the best current approximation ratio of an efficient algorithm is $tilde O(n^{9/19})$. The best currently known lower bound on the approximability of both the
Maintaining and updating shortest paths information in a graph is a fundamental problem with many applications. As computations on dense graphs can be prohibitively expensive, and it is preferable to perform the computations on a sparse skeleton of the given graph that roughly preserves the shortest paths information. Spanners and emulators serve this purpose. This paper develops fast dynamic algorithms for sparse spanner and emulator maintenance and provides evidence from fine-grained complexity that these algorithms are tight. Under the popular OMv conjecture, we show that there can be no decremental or incremental algorithm that maintains an $n^{1+o(1)}$ edge (purely additive) $+n^{delta}$-emulator for any $delta<1/2$ with arbitrary polynomial preprocessing time and total update time $m^{1+o(1)}$. Also, under the Combinatorial $k$-Clique hypothesis, any fully dynamic combinatorial algorithm that maintains an $n^{1+o(1)}$ edge $(1+epsilon,n^{o(1)})$-spanner or emulator must either have preprocessing time $mn^{1-o(1)}$ or amortized update time $m^{1-o(1)}$. Both of our conditional lower bounds are tight. As the above fully dynamic lower bound only applies to combinatorial algorithms, we also develop an algebraic spanner algorithm that improves over the $m^{1-o(1)}$ update time for dense graphs. For any constant $epsilonin (0,1]$, there is a fully dynamic algorithm with worst-case update time $O(n^{1.529})$ that whp maintains an $n^{1+o(1)}$ edge $(1+epsilon,n^{o(1)})$-spanner. Our new algebraic techniques and spanner algorithms allow us to also obtain (1) a new fully dynamic algorithm for All-Pairs Shortest Paths (APSP) with update and path query time $O(n^{1.9})$; (2) a fully dynamic $(1+epsilon)$-approximate APSP algorithm with update time $O(n^{1.529})$; (3) a fully dynamic algorithm for near-$2$-approximate Steiner tree maintenance.
The diameter, radius and eccentricities are natural graph parameters. While these problems have been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP), which is very computationally intensive. This is the situation for dynamic approximation algorithms as well, and even if only edge insertions or edge deletions need to be supported. This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal under popular hypotheses in fine-grained complexity. Some of the highlights include: - Under popular hardness hypotheses, there can be no significantly better fully dynamic approximation algorithms than recomputing the answer after each update, or maintaining full APSP. - Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For instance, a nearly $(3/2+epsilon)$-approximation to Diameter in directed or undirected graphs can be maintained decrementally in total time $m^{1+o(1)}sqrt{n}/epsilon^2$. This nearly matches the static $3/2$-approximation algorithm for the problem that is known to be conditionally optimal.
Consider an online facility assignment problem where a set of facilities $F = { f_1, f_2, f_3, cdots, f_{|F|} }$ of equal capacity $l$ is situated on a metric space and customers arrive one by one in an online manner on that space. We assign a customer $c_i$ to a facility $f_j$ before a new customer $c_{i+1}$ arrives. The cost of this assignment is the distance between $c_i$ and $f_j$. The objective of this problem is to minimize the sum of all assignment costs. Recently Ahmed et al. (TCS, 806, pp. 455-467, 2020) studied the problem where the facilities are situated on a line and computed competitive ratio of Algorithm Greedy which assigns the customer to the nearest available facility. They computed competitive ratio of algorithm named Algorithm Optimal-Fill which assigns the new customer considering optimal assignment of all previous customers. They also studied the problem where the facilities are situated on a connected unweighted graph. In this paper we first consider that $F$ is situated on the vertices of a connected unweighted grid graph $G$ of size $r times c$ and customers arrive one by one having positions on the vertices of $G$. We show that Algorithm Greedy has competitive ratio $r times c + r + c$ and Algorithm Optimal-Fill has competitive ratio $O(r times c)$. We later show that the competitive ratio of Algorithm Optimal-Fill is $2|F|$ for any arbitrary graph. Our bound is tight and better than the previous result. We also consider the facilities are distributed arbitrarily on a plane and provide an algorithm for the scenario. We also provide an algorithm that has competitive ratio $(2n-1)$. Finally, we consider a straight line metric space and show that no algorithm for the online facility assignment problem has competitive ratio less than $9.001$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا