Do you want to publish a course? Click here

Non-Markovianity-assisted optimal continuous variable quantum teleportation

94   0   0.0 ( 0 )
 Added by Fabrizio Illuminati
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the continuous-variable (CV) quantum teleportation protocol in the case that one of the two modes of the shared entangled resource is sent to the receiver through a Gaussian Quantum Brownian Motion noisy channel. We show that if the channel is engineered in a non-Markovian regime, the information backflow from the environment induces an extra dependance of the phase of the two-mode squeezing of the shared Gaussian entangled resource on the transit time along the channel of the shared mode sent to the receiver. Optimizing over the non-Markovianity dependent phase of the squeezing yields a significant enhancement of the teleportation fidelity. For short enough channel transit times, essentially unit fidelity is achieved at realistic, finite values of the squeezing amplitude for a sufficiently large degree of the channel non-Markovianity.



rate research

Read More

We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the classical information provided by Alice. We study here the noise added by teleportation and compare its influence in the Gaussian and non-Gaussian settings.
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.
We investigate the asymptotic dynamics of exact quantum Brownian motion. We find that non-Markovianity can persist in the long-time limit, and that in general the asymptotic behaviour depends strongly on the system-environment coupling and the spectral density of the bath.
We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum and the, suitably measured, amount of non-Gaussianity.
120 - Jaehak Lee , Jiyong Park , 2017
Quantum teleportation is one of the crucial protocols in quantum information processing. It is important to accomplish an efficient teleportation under practical conditions, aiming at a higher fidelity desirably using fewer resources. The continuous-variable (CV) version of quantum teleportation was first proposed using a Gaussian state as a quantum resource, while other attempts were also made to improve performance by applying non-Gaussian operations. We investigate the CV teleportation to find its ultimate fidelity under energy constraint identifying an optimal quantum state. For this purpose, we present a formalism to evaluate teleportation fidelity as an expectation value of an operator. Using this formalism, we prove that the optimal state must be a form of photon-number entangled states. We further show that Gaussian states are near-optimal while non-Gaussian states make a slight improvement and therefore are rigorously optimal, particularly in the low-energy regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا