No Arabic abstract
We present Washington system colour-magnitude diagrams (CMDs) for 17 practically unstudied star clusters located in the bar as well as in the inner disc and outer regions of the Large Magellanic Cloud (LMC). Cluster sizes were estimated from star counts distributed throughout the entire observed fields. Based on the best fits of theoretical isochrones to the cleaned $(C-T_1,T_1)$ CMDs, as well as on the $delta T_1$ parameter and the standard giant branch method, we derive ages and metallicities for the cluster sample. Four objects are found to be intermediate-age clusters (1.8-2.5 Gyr), with [Fe/H] ranging from -0.66 to -0.84. With the exception of SL263, a very young cluster ($sim$ 16 Myr), the remaining 12 objects are aged between 0.32 and 0.89 Gyr, with their [Fe/H] values ranging from -0.19 to -0.50. We combined our results with those for other 231 clusters studied in a similar way using the Washington system. The resulting age-metallicity relationship shows a significant dispersion in metallicities, whatever age is considered. Although there is a clear tendency for the younger clusters to be more metal-rich than the intermediate ones, we believe that none of the chemical evolution models currently available in the literature reasonably well represents the recent chemical enrichment processes in the LMC clusters. The present sample of 17 clusters is part of our ongoing project of generating a database of LMC clusters homogeneously studied using the Washington photometric system and applying the same analysis procedure
NGC1846 and NGC1783 are two massive star clusters in the Large Magellanic Cloud, hosting both an extended main sequence turn-off and a dual clump of red giants. They present similar masses but differ mainly in angular size. Starting from their high-quality ACS data in the F435W, F555W and F814W filters, and updated sets of stellar evolutionary tracks, we derive their star formation rates as a function of age, SFR(t), by means of the classical method of CMD reconstruction which is usually applied to nearby galaxies. The method confirms the extended periods of star formation derived from previous analysis of the same data. When the analysis is performed for a finer resolution in age, we find clear evidence for a 50-Myr long hiatus between the oldest peak in the SFR(t), and a second prolonged period of star formation, in both clusters. For the more compact cluster NGC1846, there seems to be no significant difference between the SFR(t) in the cluster centre and in an annulus with radii between 20 and 60 arcsec (from 4.8 to 15.4 pc). The same does not occur in the more extended NGC1783 cluster, where the outer ring (between 33 and 107 arcsec, from 8.0 to 25.9 pc) is found to be slightly younger than the centre. We also explore the best-fitting slope of the present-day mass function and binary fraction for the different cluster regions, finding hints of a varying mass function between centre and outer ring in NGC1783. These findings are discussed within the present scenarios for the formation of clusters with multiple turn-offs.
We report the results of our project devoted to study the chemical enrichment history of the field population in the Magellanic Clouds using Ca II triplet spectroscopy.
The HST/ACS colour-magnitude diagrams (CMD) of the populous LMC star cluster NGC1751 present both a broad main sequence turn-off and a dual clump of red giants. We show that the latter feature is real and associate it to the first appearance of electron-degeneracy in the H-exhausted cores of the cluster stars. We then apply to the NGC1751 data the classical method of star formation history (SFH) recovery via CMD reconstruction, for different radii corresponding to the cluster centre, the cluster outskirts, and the underlying LMC field. The mean SFH derived from the LMC field is taken into account during the stage of SFH-recovery in the cluster regions, in a novel approach which is shown to significantly improve the quality of the SFH results. For the cluster centre, we find a best-fitting solution corresponding to prolonged star formation for a for a timespan of 460 Myr, instead of the two peaks separated by 200 Myr favoured by a previous work based on isochrone fitting. Remarkably, our global best-fitting solution provides an excellent fit to the data - with chi^2 and residuals close to the theoretical minimum - reproducing all the CMD features including the dual red clump. The results for a larger ring region around the centre indicate even longer star formation, but in this case the results are of lower quality, probably because of the differential extinction detected in the area. Therefore, the presence of age gradients in NGC1751 could not be probed. Together with our previous findings for the SMC cluster NGC419, the present results for the NGC1751 centre argue in favour of multiple star formation episodes (or continued star formation) being at the origin of the multiple main sequence turn-offs in Magellanic Cloud clusters with ages around 1.5 Gyr.
The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxys oldest stars for [Fe/H]$lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$lesssim0$ are older than $t approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.
The main goal of this study is to compile a catalogue including the fundamental parameters of a complete sample of 277 star clusters (SCs) of the Large Magellanic Cloud (LMC) observed in the Washington photometric system, including 82 clusters very recently studied by us. All the clusters parameters such as radii, deprojected distances, reddenings, ages and metallicities have been obtained by appyling essentially the same procedures which are briefly described here. We have used empirical cumulative distribution functions to examine age, metallicity and deprojected distance distributions for different cluster subsamples of the catalogue. Our new sample made up of 82 additional clusters recently studied by us represents about a 40% increase in the total number of LMC SCs observed up to now in the Washington photometric system. In particular, we report here the fundamental parameters obtained for the first time for 42 of these clusters. We found that single LMC SCs are typically older than multiple SCs. Both single and multiple SCs exhibit asymmetrical distributions in log (age). We compared cluster ages derived through isochrone fittings obtained using different models of the Padova group. Although $t_G$ and $t_B$ ages obtained using isochrones from Girardi et al. (2002) and Bressan et al. (2012), respectively, are consistent in general terms, we found that $t_B$ values are not only typically larger than $t_G$ ages but also that Bressan et al.s age uncertainties are clearly smaller than the corresponding Girardi et al. values.