Do you want to publish a course? Click here

Anomalous magnetization of $S$=2 ferromagnetic-antiferromagnetic alternating chain with Ising anisotropy

144   0   0.0 ( 0 )
 Added by Hironori Yamaguchi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first experimental realization of an $S=2$ ferromagnetic-antiferromagnetic (F-AF) alternating chain in a new Mn-verdazyl complex [Mn(hfac)$_2$]$cdot$($o$-Py-V) [hfac=1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V=3-(2-pyridyl)-1,5-diphenylverdazyl]. Through the $ab$ $initio$ molecular orbital calculation, magnetization, and ESR measurements, this compound is confirmed to form an $S=2$ F-AF alternating chain with Ising anisotropy below about 100 K. Furthermore, we find an anomalous change in magnetization at 1/4 of the saturation value, which is probably a manifestation of the quantum nature of the system.



rate research

Read More

We successfully synthesized the zinc-verdazyl complex [Zn(hfac)$_2$]$cdot$($o$-Py-V) [hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate; $o$-Py-V = 3-(2-pyridyl)-1,5-diphenylverdazyl], which is an ideal model compound with an $S$ = 1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain (F-AF AHC). $Ab$ $initio$ molecular orbital (MO) calculations indicate that two dominant interactions $J_{rm{F}}$ and $J_{rm{AF}}$ form the $S=1/2$ F-AF AHC in this compound. The magnetic susceptibility and magnetic specific heat of the compound exhibit thermally activated behavior below approximately 1 K. Furthermore, its magnetization curve is observed up to the saturation field and directly indicates a zero-field excitation gap of 0.5 T. These experimental results provide evidence for the existence of a Haldane gap. We successfully explain the results in terms of the $S=1/2$ F-AF AHC through quantum Monte Carlo calculations with $|J_{rm{AF}}/J_{rm{F}}|$ = 0.22. The $ab$ $initio$ MO calculations also indicate a weak AF interchain interaction $J$ and that the coupled F-AF AHCs form a honeycomb lattice. The $J$ dependence of the Haldane gap is calculated, and the actual value of $J$ is determined to be less than 0.01$|J_{rm{F}}|$.
We present a study of the one-dimensional S=1 antiferromagnetic spin chain with large easy plane anisotropy, with special emphasis on field-induced quantum phase transitions. Temperature and magnetic field dependence of magnetization, specific heat, and thermal conductivity is presented using a combination of numerical methods. In addition, the original S=1 model is mapped into the low-energy effective S=1/2 XXZ Heisenberg chain, a model which is exactly solvable using the Bethe ansatz technique. The effectiveness of the mapping is explored, and we show that all considered quantities are in qualitative, and in some cases quantitative, agreement. The thermal conductivity of the considered S=1 model is found to be strongly influenced by the underlying effective description. Furthermore, we elucidate the low-lying electron spin resonance spectrum, based on a semi--analytical Bethe ansatz calculation of the effective S=1/2 model.
Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in $S=1/2$ dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temperatures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu$_2$V$_2$O$_8$ which we show to be an alternating antiferromagnetic-ferromagnetic spin$-1/2$ chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.
Inelastic neutron scattering was used to measure the magnetic field dependence of spin excitations in the antiferromagnetic S=1/2 chain CuCl_2 2(dimethylsulfoxide) (CDC) in the presence of uniform and staggered fields. Dispersive bound states emerge from a zero-field two-spinon continuum with different finite energy minima at wave numbers q=pi and q_i approx pi (1-2<S_z>). The ratios of the field dependent excitation energies are in excellent agreement with predictions for breather and soliton solutions to the quantum sine-Gordon model, the proposed low-energy theory for S=1/2 chains in a staggered field. The data are also consistent with the predicted soliton and n=1,2 breather polarizations and scattering cross sections.
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility, magnetization and specific heat measurements on powder samples. The magnetic susceptibility chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا