Do you want to publish a course? Click here

Rank deficiency of Kalman error covariance matrices in linear time-varying system with deterministic evolution

201   0   0.0 ( 0 )
 Added by Amit Apte
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove that for linear, discrete, time-varying, deterministic system (perfect model) with noisy outputs, the Riccati transformation in the Kalman filter asymptotically bounds the rank of the forecast and the analysis error covariance matrices to be less than or equal to the number of non-negative Lyapunov exponents of the system. Further, the support of these error covariance matrices is shown to be confined to the space spanned by the unstable-neutral backward Lyapunov vectors, providing the theoretical justification for the methodology of the algorithms that perform assimilation only in the unstable-neutral subspace. The equivalent property of the autonomous system is investigated as a special case.



rate research

Read More

Let $M_n$ be a random $ntimes n$ matrix with i.i.d. $text{Bernoulli}(1/2)$ entries. We show that for fixed $kge 1$, [lim_{nto infty}frac{1}{n}log_2mathbb{P}[text{corank }M_nge k] = -k.]
Ensemble Kalman methods constitute an increasingly important tool in both state and parameter estimation problems. Their popularity stems from the derivative-free nature of the methodology which may be readily applied when computer code is available for the underlying state-space dynamics (for state estimation) or for the parameter-to-observable map (for parameter estimation). There are many applications in which it is desirable to enforce prior information in the form of equality or inequality constraints on the state or parameter. This paper establishes a general framework for doing so, describing a widely applicable methodology, a theory which justifies the methodology, and a set of numerical experiments exemplifying it.
Linear time-varying (LTV) systems are widely used for modeling real-world dynamical systems due to their generality and simplicity. Providing stability guarantees for LTV systems is one of the central problems in control theory. However, existing approaches that guarantee stability typically lead to significantly sub-optimal cumulative control cost in online settings where only current or short-term system information is available. In this work, we propose an efficient online control algorithm, COvariance Constrained Online Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a large class of LTV systems while also minimizing the control cost. The proposed method incorporates a state covariance constraint into the semi-definite programming (SDP) formulation of the LQ optimal controller. We empirically demonstrate the performance of COCO-LQ in both synthetic experiments and a power system frequency control example.
66 - Weiguo Xia , Ji Liu , Tamer Basar 2017
This paper studies a recently proposed continuous-time distributed self-appraisal model with time-varying interactions among a network of $n$ individuals which are characterized by a sequence of time-varying relative interaction matrices. The model describes the evolution of the social-confidence levels of the individuals via a reflected appraisal mechanism in real time. We first show by example that when the relative interaction matrices are stochastic (not doubly stochastic), the social-confidence levels of the individuals may not converge to a steady state. We then show that when the relative interaction matrices are doubly stochastic, the $n$ individuals self-confidence levels will all converge to $1/n$, which indicates a democratic state, exponentially fast under appropriate assumptions, and provide an explicit expression of the convergence rate.
We present a method to over-approximate reachable tubes over compact time-intervals, for linear continuous-time, time-varying control systems whose initial states and inputs are subject to compact convex uncertainty. The method uses numerical approximations of transition matrices, is convergent of first order, and assumes the ability to compute with compact convex sets in finite dimension. We also present a variant that applies to the case of zonotopic uncertainties, uses only linear algebraic operations, and yields zonotopic over-approximations. The performance of the latter variant is demonstrated on an example.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا