Do you want to publish a course? Click here

On the strongly damped wave equation with constraint

257   0   0.0 ( 0 )
 Added by Giulio Schimperna
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A weak formulation for the so-called semilinear strongly damped wave equation with constraint is introduced and a corresponding notion of solution is defined. The main idea in this approach consists in the use of duality techniques in Sobolev-Bochner spaces, aimed at providing a suitable relaxation of the constraint term. A global in time existence result is proved under the natural condition that the initial data have finite physical energy.



rate research

Read More

A strongly damped wave equation including the displacement depending nonlinear damping term and nonlinear interaction function is considered. The main aim of the note is to show that under the standard dissipativity restrictions on the nonlinearities involved the initial boundary value problem for the considered equation is globally well-posed in the class of sufficiently regular solutions and the semigroup generated by the problem possesses a global attractor in the corresponding phase space. These results are obtained for the nonlinearities of an arbitrary polynomial growth and without the assumption that the considered problem has a global Lyapunov function.
We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity $phi$ is less than 6 and $f$ may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case $phiequiv0$ which corresponds to the so-called semi-linear strongly damped wave equation, our result allows to remove the long-standing growth restriction $|f(u)|leq C(1+ |u|^5)$.
We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in cite{Chr-NC-erratum} is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.
74 - Yuzhu Han , Qi Li 2020
This paper is devoted to the lifespan of solutions to a damped fourth-order wave equation with logarithmic nonlinearity $$u_{tt}+Delta^2u-Delta u-omegaDelta u_t+alpha(t)u_t=|u|^{p-2}uln|u|.$$ Finite time blow-up criteria for solutions at both lower and high initial energy levels are established, and an upper bound for the blow-up time is given for each case. Moreover, by constructing a new auxiliary functional and making full use of the strong damping term, a lower bound for the blow-up time is also derived.
136 - Fengwen Han , Bobo Hua 2020
We study the wave equation on infinite graphs. On one hand, in contrast to the wave equation on manifolds, we construct an example for the non-uniqueness for the Cauchy problem of the wave equation on graphs. On the other hand, we obtain a sharp uniqueness class for the solutions of the wave equation. The result follows from the time analyticity of the solutions to the wave equation in the uniqueness class.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا