Do you want to publish a course? Click here

Imperfect geometric control and overdamping for the damped wave equation

94   0   0.0 ( 0 )
 Added by Hans Christianson
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in cite{Chr-NC-erratum} is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.



rate research

Read More

A weak formulation for the so-called semilinear strongly damped wave equation with constraint is introduced and a corresponding notion of solution is defined. The main idea in this approach consists in the use of duality techniques in Sobolev-Bochner spaces, aimed at providing a suitable relaxation of the constraint term. A global in time existence result is proved under the natural condition that the initial data have finite physical energy.
We present a new method of investigating the so-called quasi-linear strongly damped wave equations $$ partial_t^2u-gammapartial_tDelta_x u-Delta_x u+f(u)= abla_xcdot phi( abla_x u)+g $$ in bounded 3D domains. This method allows us to establish the existence and uniqueness of energy solutions in the case where the growth exponent of the non-linearity $phi$ is less than 6 and $f$ may have arbitrary polynomial growth rate. Moreover, the existence of a finite-dimensional global and exponential attractors for the solution semigroup associated with that equation and their additional regularity are also established. In a particular case $phiequiv0$ which corresponds to the so-called semi-linear strongly damped wave equation, our result allows to remove the long-standing growth restriction $|f(u)|leq C(1+ |u|^5)$.
We prove existence of the global attractor of the damped and driven Euler--Bardina equations on the 2D sphere and on arbitrary domains on the sphere and give explicit estimates of its fractal dimension in terms of the physical parameters.
In this paper we show how to obtain decay estimates for the damped wave equation on a compact manifold without geometric control via knowledge of the dynamics near the un-damped set. We show that if replacing the damping term with a higher-order emph{complex absorbing potential} gives an operator enjoying polynomial resolvent bounds on the real axis, then the resolvent associated to our damped problem enjoys bounds of the same order. It is known that the necessary estimates with complex absorbing potential can also be obtained via gluing from estimates for corresponding non-compact models.
A strongly damped wave equation including the displacement depending nonlinear damping term and nonlinear interaction function is considered. The main aim of the note is to show that under the standard dissipativity restrictions on the nonlinearities involved the initial boundary value problem for the considered equation is globally well-posed in the class of sufficiently regular solutions and the semigroup generated by the problem possesses a global attractor in the corresponding phase space. These results are obtained for the nonlinearities of an arbitrary polynomial growth and without the assumption that the considered problem has a global Lyapunov function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا