Do you want to publish a course? Click here

Cavity State Manipulation Using Photon-Number Selective Phase Gates

312   0   0.0 ( 0 )
 Added by Reinier Heeres
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The large available Hilbert space and high coherence of cavity resonators makes these systems an interesting resource for storing encoded quantum bits. To perform a quantum gate on this encoded information, however, complex nonlinear operations must be applied to the many levels of the oscillator simultaneously. In this work, we introduce the Selective Number-dependent Arbitrary Phase (SNAP) gate, which imparts a different phase to each Fock state component using an off-resonantly coupled qubit. We show that the SNAP gate allows control over the quantum phases by correcting the unwanted phase evolution due to the Kerr effect. Furthermore, by combining the SNAP gate with oscillator displacements, we create a one-photon Fock state with high fidelity. Using just these two controls, one can construct arbitrary unitary operations, offering a scalable route to performing logical manipulations on oscillator-encoded qubits.



rate research

Read More

Cavity-mediated two-qubit gates, for example between solid-state spins, are attractive for quantum network applications. We propose three schemes to implement a controlled phase-flip gate mediated by a cavity. The main advantage of all these schemes is the possibility to perform them using a cavity with high cooperativity, but not in the strong coupling regime. We calculate the fidelity of each scheme in detail, taking into account the most important realistic imperfections, and compare them to highlight the optimal conditions for each scheme. Using these results, we discuss which quantum system characteristics might favor one scheme over another.
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero phonon line with indistinguishabilities above $97%$ up to $18$ K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from $87%$ (resp. $24%$) without cavity effect to more than $99%$ (resp. $76%$) at $0$ K (resp. $20$ K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We find conditions for population inversion in coherently pumped and incoherently pumped quantum dot. We show that squeezing in the output for two two photon laser is not visible using coherent as well as incoherent pump. We discuss effect of phonon coupling using recently developed polaron transformed master equation at low temperatures. We also propose scheme for generating squeezed state of field using four wave mixing.
Charged quantum dots containing an electron or hole spin are bright solid-state qubits suitable for quantum networks and distributed quantum computing. Incorporating such quantum dot spin into a photonic crystal cavity creates a strong spin-photon interface, in which the spin can control a photon by modulating the cavity reflection coefficient. However, previous demonstrations of such spin-photon interfaces have relied on quantum dots that are charged randomly by nearby impurities, leading to instability in the charge state, which causes poor contrast in the cavity reflectivity. Here we demonstrate a strong spin-photon interface using a quantum dot that is charged deterministically with a diode structure. By incorporating this actively charged quantum dot in a photonic crystal cavity, we achieve strong coupling between the cavity mode and the negatively charged state of the dot. Furthermore, by initializing the spin through optical pumping, we show strong spin-dependent modulation of the cavity reflectivity, corresponding to a cooperativity of 12. This spin-dependent reflectivity is important for mediating entanglement between spins using photons, as well as generating strong photon-photon interactions for applications in quantum networking and distributed quantum computing.
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressure-like) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا