Do you want to publish a course? Click here

Imaging the Expanding Shell of SN 2011dh

164   0   0.0 ( 0 )
 Added by Aletha de Witt Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on third epoch VLBI observations of the radio-bright supernova SN 2011dh located in the nearby (7.8 Mpc) galaxy M51. The observations took place at $t=453$ d after the explosion and at a frequency of 8.4 GHz. We obtained a fairly well resolved image of the shell of SN 2011dh, making it one of only six recent supernovae for which resolved images of the ejecta are available. SN 2011dh has a relatively clear shell morphology, being almost circular in outline, although there may be some asymmetry in brightness around the ridge. By fitting a spherical shell model directly to the visibility measurements we determine the angular radius of SN 2011dhs radio emission to be $636 pm 29$ $mu$as. At a distance of 7.8 Mpc, this angular radius corresponds to a linear radius of $(7.4 pm 0.3) times 10^{16}$ cm and an average expansion velocity since the explosion of $19000^{+2800}_{-2400}$ kms$^{-1}$. We combine our VLBI measurements of SN 2011dhs radius with values determined from the radio spectral energy distribution under the assumption of a synchrotron-self-absorbed spectrum, and find all the radii are consistent with a power-law evolution, with $R sim t^{0.97pm0.01}$, implying almost free expansion over the period $t=4$ d to 453 d.



rate research

Read More

107 - Justyn R. Maund 2019
Due to the small amount of hydrogen (${leq 0.1M_{odot}}$) remaining on the surface of their progenitors, Type IIb supernovae are sensitive probes of the mass loss processes of massive stars towards the ends of their lives, including the role of binarity. We report late-time Hubble Space Telescope observations of SN 2011dh in M51, and a brief period of re-brightening and plateau in the photometric light curve, from $1.8$ to $6.2$ years after the explosion. These observations exclude the role of circumstellar interaction, however a slow rotating magnetar, a significant quantity of radioactive elements or a light echo could be responsible for the late-time luminosity observed at $t > 1000mathrm{d}$. If the late-time light curve is powered by the decay of radioactive elements, SN~2011dh is required to have produced $sim 2.6 times 10^{-3},M_{odot}$ of $mathrm{^{44}Ti}$, which is significantly in excess of the amount inferred from earlier nebular spectra of SN 2011dh itself or measured in the Cas A SN remnant. The evolution of the brightness and the colour of the late-time light curve also supports the role of a light echo originating from dust with a preferred geometry of a disk of extent $sim 1.8$ to $sim 2.7,mathrm{pc}$ from the SN, consistent with a wind-blown bubble. Accounting for the long term photometric evolution due to a light echo, the flux contribution from a surviving binary companion at ultraviolet wavelengths can be isolated and corresponds to a star of $sim 9 - 10M_{odot}$.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
We report spectroscopic and photometric observations of the Type IIb SN 2011dh obtained between 4 and 34 days after the estimated date of explosion (May 31.5 UT). The data cover a wide wavelength range from 2,000 Angstroms in the UV to 2.4 microns in the NIR. Optical spectra provide line profiles and velocity measurements of HI, HeI, CaII and FeII that trace the composition and kinematics of the SN. NIR spectra show that helium is present in the atmosphere as early as 11 days after the explosion. A UV spectrum obtained with the STIS reveals that the UV flux for SN 2011dh is low compared to other SN IIb. The HI and HeI velocities in SN 2011dh are separated by about 4,000 km/s at all phases. We estimate that the H-shell of SN 2011dh is about 8 times less massive than the shell of SN 1993J and about 3 times more massive than the shell of SN 2008ax. Light curves (LC) for twelve passbands are presented. The maximum bolometric luminosity of $1.8 pm 0.2 times 10^{42}$ erg s$^{-1}$ occurred about 22 days after the explosion. NIR emission provides more than 30% of the total bolometric flux at the beginning of our observations and increases to nearly 50% of the total by day 34. The UV produces 16% of the total flux on day 4, 5% on day 9 and 1% on day 34. We compare the bolometric light curves of SN 2011dh, SN 2008ax and SN 1993J. The LC are very different for the first twelve days after the explosions but all three SN IIb display similar peak luminosities, times of peak, decline rates and colors after maximum. This suggests that the progenitors of these SN IIb may have had similar compositions and masses but they exploded inside hydrogen shells that that have a wide range of masses. The detailed observations presented here will help evaluate theoretical models for this supernova and lead to a better understanding of SN IIb.
We report on Expanded Very Large Array (EVLA) observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well-described by the self-similar propagation of a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v approx 0.1c, supporting the classification of the progenitor as a compact star (R_* approx 10^11 cm). We find that the circumstellar density is consistent with a {rho} propto r^-2 profile. We determine that the progenitor shed mass at a constant rate of approx 3 times 10^-5 M_odot / yr, assuming a wind velocity of 1000 km / s (values appropriate for a Wolf-Rayet star), or approx 7 times 10^-7 M_odot / yr assuming 20 km / s (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}_B = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star - perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.
From multi-epoch adaptive optics imaging and integral field unit spectroscopy we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterised by a large polar outflow velocity of 6720 +/- 650 km/s and knots moving at even larger velocities of 8450 +/- 570 km/s. We derive an expansion parallax distance of 8.2 +/- 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L_Sun = 4.34 +/- 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا