Do you want to publish a course? Click here

A simple framework on sorting permutations

139   0   0.0 ( 0 )
 Added by Ricky Xiaofeng Chen
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In this paper we present a simple framework to study various distance problems of permutations, including the transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. These problems are very important in the study of the evolution of genomes. We give a general formulation for lower bounds of the transposition and block-interchange distance from which the existing lower bounds obtained by Bafna and Pevzner, and Christie can be easily derived. As to the reversal distance of signed permutations, we translate it into a block-interchange distance problem of permutations so that we obtain a new lower bound. Furthermore, studying distance problems via our framework motivates several interesting combinatorial problems related to product of permutations, some of which are studied in this paper as well.



rate research

Read More

Computing the reversal distances of signed permutations is an important topic in Bioinformatics. Recently, a new lower bound for the reversal distance was obtained via the plane permutation framework. This lower bound appears different from the existing lower bound obtained by Bafna and Pevzner through breakpoint graphs. In this paper, we prove that the two lower bounds are equal. Moreover, we confirm a related conjecture on skew-symmetric plane permutations, which can be restated as follows: let $p=(0,-1,-2,ldots -n,n,n-1,ldots 1)$ and let $$ tilde{s}=(0,a_1,a_2,ldots a_n,-a_n,-a_{n-1},ldots -a_1) $$ be any long cycle on the set ${-n,-n+1,ldots 0,1,ldots n}$. Then, $n$ and $a_n$ are always in the same cycle of the product $ptilde{s}$. Furthermore, we show the new lower bound via plane permutations can be interpreted as the topological genera of orientable surfaces associated to signed permutations.
We show that the number of members of S_n avoiding any one of five specific triples of 4-letter patterns is given by sequence A111279 in OEIS, which is known to count weak sorting permutations. By numerical evidence, there are no other (non-trivial) triples of 4-letter patterns giving rise to this sequence. We make use of a variety of methods in proving our result, including recurrences, the kernel method, direct counting, and bijections.
In this paper we present a topological framework for studying signed permutations and their reversal distance. As a result we can give an alternative approach and interpretation of the Hannenhalli-Pevzner formula for the reversal distance of signed permutations. Our approach utlizes the Poincare dual, upon which reversals act in a particular way and obsoletes the notion of padding of the signed permutations. To this end we construct a bijection between signed permutations and an equivalence class of particular fatgraphs, called $pi$-maps, and analyze the action of reversals on the latter. We show that reversals act via either slicing, gluing or half-flipping of external vertices, which implies that any reversal changes the topological genus by at most one. Finally we revisit the Hannenhalli-Pevzner formula employing orientable and non-orientable, irreducible, $pi$-maps.
In this paper we generalize permutations to plane permutations. We employ this framework to derive a combinatorial proof of a result of Zagier and Stanley, that enumerates the number of $n$-cycles $omega$, for which $omega(12cdots n)$ has exactly $k$ cycles. This quantity is $0$, if $n-k$ is odd and $frac{2C(n+1,k)}{n(n+1)}$, otherwise, where $C(n,k)$ is the unsigned Stirling number of the first kind. The proof is facilitated by a natural transposition action on plane permutations which gives rise to various recurrences. Furthermore we study several distance problems of permutations. It turns out that plane permutations allow to study transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. Novel connections between these different distance problems are established via plane permutations.
103 - David Callan 2016
There is a bijection from Schroder paths to {4132, 4231}-avoiding permutations due to Bandlow, Egge, and Killpatrick that sends area to inversion number. Here we give a concise description of this bijection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا