Do you want to publish a course? Click here

Optomechanical creation of magnetic fields for photons on a lattice

142   0   0.0 ( 0 )
 Added by Vittorio Peano
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams with the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array.



rate research

Read More

We analyze a method for the creation, storage and retrieval of optomechanical Schrodinger cat states, in which there is a quantum superposition of two distinct macroscopic states of a mechanical oscillator. In the proposal, an optical cat state is first prepared in an optical cavity, then transferred to the mechanical mode, where it is stored and later retrieved using control fields. We carry out numerical simulations for the quantum memory protocol for optomechanical cat states using the positive-P phase space representation. This has a compact, positive representation for a cat state, thus allowing a probabilistic simulation of this highly non-classical quantum system. To verify the effectiveness of the cat-state quantum memory, we consider several cat-state signatures and show how they can be computed. We also investigate the effects of decoherence on a cat state by solving the standard master equation for a simplified model analytically, allowing us to compare with the numerical results. Focusing on the negativity of the Wigner function as a signature of the cat state, we evaluate analytically an upper bound on the time taken for the negativity to vanish, for a given temperature of the environment of the mechanical oscillator. We show consistency with the numerical methods. These provide exact solutions, allowing a full treatment of decoherence in an experiment that involves creating, storing and retrieving mechanical cat states using temporally mode-matched input and output pulses. Our analysis treats the internal optical and mechanical modes of an optomechanical oscillator, and the complete set of input and output field modes which become entangled with the internal modes. The model includes decoherence due to thermal effects in the mechanical reservoirs, as well as optical and mechanical losses.
The quantum walk has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multi-path interferometric schemes in real space. Here, we report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
The physics of quantized vortex excitations in atomic Bose-Einstein condensates has been extensively studied in recent years.Although simple vortex lines are relatively easy to create, control, and measure in experiments, it is a lot more difficult to do the same for vortex ring structures.Here we suggest and explore a method for generating and controlling superfluid vortex rings, vortex ring lattices, and other three dimensional vortex structures in toroidally-trapped superfluid Bose--Einstein condensates by using the artificial magnetic field produced by an optical nanofiber.The presence of the fiber also necessitates a multiply-connected geometry and we show that in this situation the presence of these vortex structures can be deduced from exciting the scissors mode of the condensate.
We study photon, phonon statistics and the cross-correlation between photons and phonons in a quadratically coupled optomechanical system. Photon blockade, phonon blockade and strongly anticorrelated photons and phonons can be observed in the same parameter regime with the effective nonlinear coupling between the optical and mechanical modes, enhanced by a strong optical driving field. Interestingly, an optimal value of the effective nonlinear coupling strength for the photon blockade is not within the strong nonlinear coupling regime. This abnormal phenomenon results from the destructive interference between different paths for two-photon excitation in the optical mode with a moderate effective nonlinear coupling strength. Further more, we show that phonon (photon) pairs and correlated photons and phonons can be generated in the strong nonlinear coupling regime with a proper detuning between the weak mechanical driving field and mechanical mode. Our results open up a way to generate anticorrelated and correlated photons and phonons, which may have important applications in quantum information processing.
Self-organized phases in cold atoms as a result of light-mediated interactions can be induced by coupling to internal or external degrees of the atoms. There has been growing interest in the interaction of internal spin degrees of freedom with the optomechanical dynamics of the external centre-of-mass motion. We present a model for the coupling between magnetic and optomechanical structuring in a $J=1/2 to J=3/2$ system in a single-mirror feedback scheme, being representative for a larger class of diffractively coupled systems such as longitudinally pumped cavities and counter-propagating beam schemes. For negative detunings, a linear stability analysis demonstrates that optical pumping and optomechanical driving cooperate to create magnetic ordering. However, for long-period transmission gratings the magnetic driving will strongly dominate the optomechanical driving, unless one operates very close to the existence range of the magnetic instability. At small lattice periods, in particular at wavelength-scale periods, the optomechanical driving will dominate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا