The problem of fermions in 1+1 dimensions in the presence of a pseudoscalar Coulomb potential plus a mixing of vector and scalar Coulomb potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. We show the relation between spin and pseudospin symmetries by means of charge-conjugation and $gamma^{5}$ chiral transformations. The cases of pure pseudoscalar and mixed vector-scalar potentials, already analyzed in previous works, are obtained as particular cases. The results presented can be extended to 3+1 dimensions.
In this article we considered models of particles living in a three-dimensional space-time with a nonstandard noncommutativity induced by shifting canonical coordinates and momenta with generators of a unitary irreducible representation of the Lorentz group. The Hilbert space gets the structure of a direct product with the representation space, where we are able to construct operators which realize the algebra of Lorentz transformations. We study the modified Landau problem for both Schrodinger and Dirac particles, whose Hamiltonians are obtained through a kind of non-Abelian Bopps shift of the dynamical variables from the ones of the usual problem in the normal space. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters. We find no constraint between the parameters referring to no-commutativity in coordinates and momenta but they rather play similar roles. Since the representation space of the unitary irreducible representations SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseudo-spin symmetries. We analyze the presence of cylindrical symmetric scalar potentials which allows us to provide analytic solutions for the resultant field equation. By using an appropriate ansatz, we find that the radial equation is a biconfluent Heun-like differential equation. The solution of this equation provides us with more than one expression for the energy eigenvalues of the oscillator. We investigate these energies and find that there is a quantum condition between them. We study this condition in detail and find that it requires the fixation of one of the physical parameters involved in the problem. Expressions for the energy of the oscillator are obtained for some values of the quantum number $n$. Some particular cases which lead to known physical systems are also addressed.
We point out a misleading treatment in the recent literature regarding analytical solutions for nonminimal vector interaction for spin-one particles in the context of the Duffin-Kemmer-Petiau (DKP) formalism. In those papers, the authors use improperly the nonminimal vector interaction endangering in their main conclusions. We present a few properties of the nonminimal vector interactions and also present the correct equations to this problem. We show that the solution can be easily found by solving Schr{o}dinger-like equations. As an application of this procedure, we consider spin-one particles in presence of a nonminimal vector linear potential.
We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The $U(2)$ ultraviolet global symmetry is often enhanced in the infrared, for instance to $O(4)$ or $SU(3)$. This is analogous to the conjectured behaviour of non-supersymmetric QED with 2 flavors. A perturbative analysis of the Gross-Neveu-Yukawa models in the $D = 4 - varepsilon$ expansion shows that the $U(2)$ preserving superpotential deformations of the sQED (modulo tuning mass terms to zero) are irrelevant, so the fixed points with enhanced symmetry are stable. We also construct an example of $mathcal{N} = 2$ sQED with 4 flavors that exhibits enhanced $SO(6)$ symmetry.
The periodic $OSp(1|2)$ quantum spin chain has both a graded and a non-graded version. Naively, the Bethe ansatz solution for the non-graded version does not account for the complete spectrum of the transfer matrix, and we propose a simple mechanism for achieving completeness. In contrast, for the graded version, this issue does not arise. We also clarify the symmetries of bot
Luis B. Castro
,Antonio S. de Castro
,Pedro Alberto
.
(2015)
.
"Pseudospin and spin symmetries in 1+1 dimensions: The case of the Coulomb potential"
.
Luis Castro B
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا