Do you want to publish a course? Click here

Improved Lower Bounds on the Ground-State Entropy of the Antiferromagnetic Potts Model

210   0   0.0 ( 0 )
 Added by Shu-Chiuan Chang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present generalized methods for calculating lower bounds on the ground-state entropy per site, $S_0$, or equivalently, the ground-state degeneracy per site, $W=e^{S_0/k_B}$, of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on $W$ for several lattices.



rate research

Read More

278 - Adam Gamsa , John Cardy 2007
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are also SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramms formula. The results are in support of our hypothesis.
211 - Yacine Ikhlef 2010
We review the exact results on the various critical regimes of the antiferromagnetic $Q$-state Potts model. We focus on the Bethe Ansatz approach for generic $Q$, and describe in each case the effective degrees of freedom appearing in the continuum limit.
We studied the non-equilibrium dynamics of the q-state Potts model in the square lattice, after a quench to sub-critical temperatures. By means of a continuous time Monte Carlo algorithm (non-conserved order parameter dynamics) we analyzed the long term behavior of the energy and relaxation time for a wide range of quench temperatures and system sizes. For q>4 we found the existence of different dynamical regimes, according to quench temperature range. At low (but finite) temperatures and very long times the Lifshitz-Allen-Cahn domain growth behavior is interrupted with finite probability when the system stuck in highly symmetric non-equilibrium metastable states, which induce activation in the domain growth, in agreement with early predictions of Lifshitz [JETP 42, 1354 (1962)]. Moreover, if the temperature is very low, the system always gets stuck at short times in a highly disordered metastable states with finite life time, which have been recently identified as glassy states. The finite size scaling properties of the different relaxation times involved, as well as their temperature dependency are analyzed in detail.
Fortuin-Kastelyn clusters in the critical $Q$-state Potts model are conformally invariant fractals. We obtain simulation results for the fractal dimension of the complete and external (accessible) hulls for Q=1, 2, 3, and 4, on clusters that wrap around a cylindrical system. We find excellent agreement between these results and theoretical predictions. We also obtain the probability distributions of the hull lengths and maximal heights of the clusters in this geometry and provide a conjecture for their form.
We calculate zeros of the $q$-state Potts model partition function on $m$th-iterate Sierpinski graphs, $S_m$, in the variable $q$ and in a temperature-like variable, $y$. We infer some asymptotic properties of the loci of zeros in the limit $m to infty$ and relate these to thermodynamic properties of the $q$-state Potts ferromagnet and antiferromagnet on the Sierpinski gasket fractal, $S_infty$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا