No Arabic abstract
Measuring association, or the lack of it, between variables plays an important role in a variety of research areas, including education, which is of our primary interest in this paper. Given, for example, student marks on several study subjects, we may for a number of reasons be interested in measuring the lack of co-monotonicity (LOC) between the marks, which rarely follow monotone, let alone linear, patterns. For this purpose, in this paper we explore a novel approach based on a LOC index, which is related to, yet substantially different from, Eckhard Liebschers recently suggested coefficient of monotonically increasing dependence. To illustrate the new technique, we analyze a data-set of student marks on mathematics, reading and spelling.
Problems in econometrics, insurance, reliability engineering, and statistics quite often rely on the assumption that certain functions are non-decreasing. To satisfy this requirement, researchers frequently model the underlying phenomena using parametric and semi-parametric families of functions, thus effectively specifying the required shapes of the functions. To tackle these problems in a non-parametric way, in this paper we suggest indices for measuring the lack of monotonicity in functions. We investigate properties of the indices and also offer a convenient computational technique for practical use.
We provide a set of counterexamples for the monotonicity of the Newton-Hewer method for solving the discrete-time algebraic Riccati equation in dynamic settings, drawing a contrast with the Riccati difference equation.
Item response theory (IRT) has become one of the most popular statistical models for psychometrics, a field of study concerned with the theory and techniques of psychological measurement. The IRT models are latent factor models tailored to the analysis, interpretation, and prediction of individuals behaviors in answering a set of measurement items that typically involve categorical response data. Many important questions of measurement are directly or indirectly answered through the use of IRT models, including scoring individuals test performances, validating a test scale, linking two tests, among others. This paper provides a review of item response theory, including its statistical framework and psychometric applications. We establish connections between item response theory and related topics in statistics, including empirical Bayes, nonparametric methods, matrix completion, regularized estimation, and sequential analysis. Possible future directions of IRT are discussed from the perspective of statistical learning.
In causal mediation studies that decompose an average treatment effect into a natural indirect effect (NIE) and a natural direct effect (NDE), examples of post-treatment confounding are abundant. Past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due to incomplete information: it is observed under the actual treatment condition while missing under the counterfactual treatment condition. This study proposes a new sensitivity analysis strategy for handling post-treatment confounding and incorporates it into weighting-based causal mediation analysis without making extra identification assumptions. Under the sequential ignorability of the treatment assignment and of the mediator, we obtain the conditional distribution of the post-treatment confounder under the counterfactual treatment as a function of not just pretreatment covariates but also its counterpart under the actual treatment. The sensitivity analysis then generates a bound for the NIE and that for the NDE over a plausible range of the conditional correlation between the post-treatment confounder under the actual and that under the counterfactual conditions. Implemented through either imputation or integration, the strategy is suitable for binary as well as continuous measures of post-treatment confounders. Simulation results demonstrate major strengths and potential limitations of this new solution. A re-analysis of the National Evaluation of Welfare-to-Work Strategies (NEWWS) Riverside data reveals that the initial analytic results are sensitive to omitted post-treatment confounding.
We provide an approach to maximal monotone bifunctions based on the theory of representative functions. Thus we extend to nonreflexive Banach spaces recent results due to A.N. Iusem and, respectively, N. Hadjisavvas and H. Khatibzadeh, where sufficient conditions guaranteeing the maximal monotonicity of bifunctions were introduced. New results involving the sum of two monotone bifunctions are also presented.