Do you want to publish a course? Click here

Unraveling of a generalized quantum Markovian master equation and its application in feedback control of a charge qubit

157   0   0.0 ( 0 )
 Added by JunYan Luo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the context of a charge qubit under continuous monitoring by a single electron transistor, we propose an unraveling of the generalized quantum Markovian master equation into an ensemble of individual quantum trajectories for stochastic point process. A suboptimal feedback algorism is implemented into individual quantum trajectories to protect a desired pure state. Coherent oscillations of the charge qubit could be maintained in principle for an arbitrarily long time in case of sufficient feedback strength. The effectiveness of the feedback control is also reflected in the detectors noise spectrum. The signal-to-noise ratio rises significantly with increasing feedback strength such that it could even exceed the Korotkov-Averin bound in quantum measurement, manifesting almost ideal quantum coherent oscillations of the qubit. The proposed unraveling and feedback protocol may open up the prospect to sustain ideal coherent oscillations of a charge qubit in quantum computation algorithms.



rate research

Read More

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of Lindbald-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of non-Lindblad type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
We present a formalism for calculating the non-symmetrized quantum current noise within the Born-Markov approximation for the master equation. The formalism is particularly well suited to obtaining the current noise for quantum transport in mesoscopic devices such as a superconducting single electron transistor (SSET). As an example of the method, we obtain explicit results for the double Josephson-quasiparticle (DJQP) resonance in a SSET. Our calculations reveal the asymmetries that develop in the current noise as well as clarifying the behavior at high frequencies. Our findings are consistent with recent measurements of the asymmetry in the current noise spectrum.
Measurement of charge configurations in few-electron quantum dots is a vital technique for spin-based quantum information processing. While fast and high-fidelity measurement is possible by using proximal quantum dot charge sensors, their operating range is limited and prone to electrical disturbances. Here we demonstrate realtime operation of a charge sensor in a feedback loop to maintain its sensitivity suitable for fast charge sensing in a Si/SiGe double quantum dot. Disturbances to the charge sensitivity, due to variation of gate voltages for operating the quantum dot and $1/f$ charge fluctuation, are compensated by a digital PID controller with the bandwidth of $approx 100,{rm kHz}$. The rapid automated tuning of a charge sensor enables unobstructed charge stability diagram measurement facilitating realtime quantum dot tuning and submicrosecond single-shot spin readout without compromising the performance of a charge sensor in time-consuming experiments for quantum information processing.
The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this instantaneous process can be stretched using weak measurements so that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. We monitor the dynamics of a resonantly driven quantum two-level system -- a superconducting quantum bit --using a near-noiseless parametric amplifier. The high-fidelity measurement output is used to actively stabilize the phase of Rabi oscillations, enabling them to persist indefinitely. This new functionality shows promise for fighting decoherence and defines a path for continuous quantum error correction.
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were take into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا