No Arabic abstract
We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with $l$-fold symmetry, ranging from quadrupole ($l=2$) to heptagon modes ($l=7$), are parametrically excited by modulating the scattering length near the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that only the $l=6$ mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our experimental results are in excellent agreement with the mean-field framework. Our work opens a new pathway for generating higher-lying collective excitations with applications, such as the probing of exotic properties of quantum fluids and providing a generation mechanism of quantum turbulence.
A Faraday-wave-like parametric instability is investigated via mean-field and Floquet analysis in immiscible binary Bose-Einstein condensates. The condensates form a so-called textit{ball-shell} structure in a two-dimensional harmonic trap. To trigger the dynamics, the scattering length of the core condensate is periodically modulated in time. We reveal that in the dynamics the interface becomes unstable towards the formation of oscillating patterns. The interface oscillates sub-harmonically exhibiting an $m$-fold rotational symmetry that can be controlled by maneuvering the amplitude and the frequency of the modulation. Using Floquet analysis we are able to predict the generated interfacial tension of the mixture and derive a dispersion relation for the natural frequencies of the emergent patterns. A heteronuclear system composed of $^{87}$Rb-$^{85}$Rb atoms can be used for the experimental realization of the phenomenon, yet our results are independent of the specifics of the employed atomic species {and of the parameter at which the driving is applied.
We systematically construct stationary soliton states in a one-component, two-dimensional, repulsive, Gross-Pitaevskii equation with a ring-shaped target-like trap similar to the potential used to confine a Bose-Einstein condensate in a recent experiment [Eckel, et al. {em Nature} {bf 506}, 200 (2014)]. In addition to the ground state configuration, we identify a wide variety of excited states involving phase jumps (and associated dark solitons) inside the ring. These configurations are obtained from a systematic bifurcation analysis starting from the linear, small atom density, limit. We study the stability, and when unstable, the dynamics of the most basic configurations. Often these lead to vortical dynamics inside the ring persisting over long time scales in our numerical experiments. To illustrate the relevance of the identified states, we showcase how such dark-soliton configurations (even the unstable ones) can be created in laboratory condensates by using phase-imprinting techniques.
We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential of an optical-box trap. We characterise the critical point for collapse and the collapse dynamics, observing universal behaviour in agreement with theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.
When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as Kibble-Zurek mechanism. Originally introduced in cosmology, it applies both to classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates via the Kibble-Zurek mechanism. We measure the power-law dependence of defects number with the quench time, and provide a check of the Kibble-Zurek scaling with the sonic horizon. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.
Improved control of the motional and internal quantum states of ultracold neutral atoms and ions has opened intriguing possibilities for quantum simulation and quantum computation. Many-body effects have been explored with hundreds of thousands of quantum-degenerate neutral atoms and coherent light-matter interfaces have been built. Systems of single or a few trapped ions have been used to demonstrate universal quantum computing algorithms and to detect variations of fundamental constants in precision atomic clocks. Until now, atomic quantum gases and single trapped ions have been treated separately in experiments. Here we investigate whether they can be advantageously combined into one hybrid system, by exploring the immersion of a single trapped ion into a Bose-Einstein condensate of neutral atoms. We demonstrate independent control over the two components within the hybrid system, study the fundamental interaction processes and observe sympathetic cooling of the single ion by the condensate. Our experiment calls for further research into the possibility of using this technique for the continuous cooling of quantum computers. We also anticipate that it will lead to explorations of entanglement in hybrid quantum systems and to fundamental studies of the decoherence of a single, locally controlled impurity particle coupled to a quantum environment.