No Arabic abstract
We present $L$-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wavefront sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semi-major axis of $20^{+3}_{-4}$~au and PDS 70 c to have a semi-major axis of $34^{+12}_{-6}$~au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2-3~$R_{Jup}$. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 $M_{textrm{Jup}}$ and a mean mass accretion rate between $3 times 10^{-7}$ and $8 times 10^{-7}~M_{textrm{Jup}}/textrm{yr}$. For PDS 70 c, we computed a mass between 1 and 3 $M_{textrm{Jup}}$ and mean mass accretion rate between $1 times 10^{-7}$ and $5 times~10^{-7} M_{textrm{Jup}}/textrm{yr}$. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets SEDs.
The recent high spatial/spectral resolution observations have enabled constraining formation mechanisms of giant planets, especially at the final stages. The current interpretation of such observations is that these planets undergo magnetospheric accretion, suggesting the importance of planetary magnetic fields. We explore the properties of accreting, magnetized giant planets surrounded by their circumplanetary disks, using the physical parameters inferred for PDS 70 b/c. We compute the magnetic field strength and the resulting spin rate of giant planets, and find that these planets may possess dipole magnetic fields of either a few 10 G or a few 100 G; the former is the natural outcome of planetary growth and radius evolution, while the resulting spin rate cannot reproduce the observations. For the latter, a consistent picture can be drawn, where strong magnetic fields induced by hot planetary interiors lead both to magnetospheric accretion and to spin-down due to disk locking. We also compute the properties of circumplanetary disks in the vicinity of these planets, taking into account planetary magnetic fields. The resulting surface density becomes very low, compared with the canonical models, implying the importance of radial movement of satellite-forming materials. Our model predicts a positive gradient of the surface density, which invokes the traps for both satellite migration and radially drifting dust particles. This work thus concludes that the final formation stages of giant planets are similar to those of low-mass stars such as brown dwarfs, as suggested by recent studies.
We present K-band interferometric observations of the PDS 70 protoplanets along with their host star using VLTI/GRAVITY. We obtained K-band spectra and 100 $mu$as precision astrometry of both PDS 70 b and c in two epochs, as well as spatially resolving the hot inner disk around the star. Rejecting unstable orbits, we found a nonzero eccentricity for PDS 70 b of $0.17 pm 0.06$, a near-circular orbit for PDS 70 c, and an orbital configuration that is consistent with the planets migrating into a 2:1 mean motion resonance. Enforcing dynamical stability, we obtained a 95% upper limit on the mass of PDS 70 b of 10 $M_textrm{Jup}$, while the mass of PDS 70 c was unconstrained. The GRAVITY K-band spectra rules out pure blackbody models for the photospheres of both planets. Instead, the models with the most support from the data are planetary atmospheres that are dusty, but the nature of the dust is unclear. Any circumplanetary dust around these planets is not well constrained by the planets 1-5 $mu$m spectral energy distributions (SEDs) and requires longer wavelength data to probe with SED analysis. However with VLTI/GRAVITY, we made the first observations of a circumplanetary environment with sub-au spatial resolution, placing an upper limit of 0.3~au on the size of a bright disk around PDS 70 b.
We present observations of the nearby (D$sim$100,pc) Herbig star HD~163296 taken with the vortex coronograph at Keck/NIRC2 in the L band (3.7~$mu$m), to search for planetary mass companions in the ringed disc surrounding this pre-main sequence star. The images reveal an arc-like region of scattered light from the disc surface layers that is likely associated with the first bright ring detected with ALMA in the $lambda$=1.3mm dust continuum at $sim$65~au. We also detect a point-like source at $sim$0farcs5 projected separation in the North-East direction, close to the inner edge of the second gap in the millimetre images. Comparing the point source photometry with the atmospheric emission models of non-accreting giant planets, we obtain a mass of 6--7~M$_J$ for a putative protoplanet, assuming a system age of 5~Myr. Based on the contrast at a 95% level of completeness calculated on the emission-free regions of our images, we set upper limits for the masses of giant planets of 8--15~M$_J$, 4.5--6.5~M$_J$ and 2.5-4.0~M$_J$ at the locations of the first, second and third gap in the millimetre dust continuum, respectively. Further deep, high resolution thermal IR imaging of the HD~163296 system are warranted, to confirm the presence and nature of the point source and to better understand the structure of the dust disc.
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L band (3.8 micron) during the commissioning of the vector vortex coronagraph recently installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point spread function subtraction, which reveals the innermost disk component from the inner working distance of $simeq 23$ AU and up to $simeq 70$ AU. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N and 8.6 micron PAH emission reported earlier. We also see an outward progression in dust location from the L-band to the H-band (VLT/SPHERE image) to the visible (HST/STIS image), likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST NICMOS in 1999 (respectively at 406 and 245 AU). We fit our new L-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains, and are consistent with the composition of the outer belts. While our image shows a putative very-faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
High-contrast imaging of exoplanets and protoplanetary disks depends on wavefront sensing and correction made by adaptive optics instruments. Classically, wavefront sensing has been conducted at optical wavelengths, which made high-contrast imaging of red targets such as M-type stars or extincted T Tauri stars challenging. Keck/NIRC2 has combined near-infrared (NIR) detector technology with the pyramid wavefront sensor (PWFS). With this new module we observed SR~21, a young star that is brighter at NIR wavelengths than at optical wavelengths. Compared with the archival data of SR~21 taken with the optical wavefront sensing we achieved $sim$20% better Strehl ratio in similar natural seeing conditions. Further post-processing utilizing angular differential imaging and reference-star differential imaging confirmed the spiral feature reported by the VLT/SPHERE polarimetric observation, which is the first detection of the SR~21 spiral in total intensity at $L^prime$ band. We also compared the contrast limit of our result ($10^{-4}$ at $0farcs4$ and $2times10^{-5}$ at $1farcs0$) with the archival data that were taken with optical wavefront sensing and confirmed the improvement, particularly at $leq0farcs5$. Our observation demonstrates that the NIR PWFS improves AO performance and will provide more opportunities for red targets in the future.