No Arabic abstract
We present a spectroscopic redshift measurement of a very bright Lyman break galaxy at z=7.7302+-0.0006 using Keck/MOSFIRE. The source was pre-selected photometrically in the EGS field as a robust z~8 candidate with H=25.0 mag based on optical non-detections and a very red Spitzer/IRAC [3.6]-[4.5] broad-band color driven by high equivalent width [OIII]+Hbeta line emission. The Lyalpha line is reliably detected at 6.1 sigma and shows an asymmetric profile as expected for a galaxy embedded in a relatively neutral inter-galactic medium near the Planck peak of cosmic reionization. The line has a rest-frame equivalent width of EW0=21+-4 A and is extended with V_FWHM=360+90-70 km/s. The source is perhaps the brightest and most massive z~8 Lyman break galaxy in the full CANDELS and BoRG/HIPPIES surveys, having assembled already 10^(9.9+-0.2) M_sol of stars at only 650 Myr after the Big Bang. The spectroscopic redshift measurement sets a new redshift record for galaxies. This enables reliable constraints on the stellar mass, star-formation rate, formation epoch, as well as combined [OIII]+Hbeta line equivalent widths. The redshift confirms that the IRAC [4.5] photometry is very likely dominated by line emission with EW0(OIII+Hbeta)= 720-150+180 A. This detection thus adds to the evidence that extreme rest-frame optical emission lines are a ubiquitous feature of early galaxies promising very efficient spectroscopic follow-up in the future with infrared spectroscopy using JWST and, later, ELTs.
We present the spectroscopic confirmation of a galaxy cluster at $z=2.095$ in the COSMOS field. This galaxy cluster was first reported in the ZFOURGE survey as harboring evolved massive galaxies using photometric redshifts derived with deep near-infrared (NIR) medium-band filters. We obtain medium resolution ($R sim$ 3600) NIR spectroscopy with MOSFIRE on the Keck 1 telescope and secure 180 redshifts in a $12times12$ region. We find a prominent spike of 57 galaxies at $z=2.095$ corresponding to the galaxy cluster. The cluster velocity dispersion is measured to be $sigma_{rm v1D}$ = 552 $pm$ 52 km/s. This is the first study of a galaxy cluster in this redshift range ($z gt 2.0$) with the combination of spectral resolution ($sim$26 km/s) and the number of confirmed members (${>}50$) needed to impose a meaningful constraint on the cluster velocity dispersion and map its members over a large field of view. Our $Lambda$CDM cosmological simulation suggests that this cluster will most likely evolve into a Virgo-like cluster with ${rm M_{vir}}{=}10^{14.4pm0.3} {rm M_odot}$ ($68%$ confidence) at $zsim$ 0. The theoretical expectation of finding such a cluster is $sim$ $4%$. Our results demonstrate the feasibility of studying galaxy clusters at $z > 2$ in the same detailed manner using multi-object NIR spectrographs as has been done in the optical in lower redshift clusters.
We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at $1.5<z<2.5$. ZFIRE measures accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The galaxies are selected from a stellar mass limited sample based on deep near infra-red imaging ($mathrm{K_{AB}<25}$) and precise photometric redshifts from the ZFOURGE and UKIDSS surveys as well as grism redshifts from 3DHST. Between 2013--2015 ZFIRE has observed the COSMOS and UDS legacy fields over 13 nights and has obtained 211 galaxy redshifts over $1.57<z<2.66$ from a combination of nebular emission lines (such as Halpha, NII, Hbeta, OII, OIII, SII) observed at 1--2micron. Based on our medium-band NIR photometry, we are able to spectrophotometrically flux calibrate our spectra to around10% accuracy. ZFIRE reaches $5sigma$ emission line flux limits of around$mathrm{3times10^{-18}~erg/s/cm^2}$ with a resolving power of $R=3500$ and reaches masses down to around10$^{9}$msol. We confirm that the primary input survey, ZFOURGE, has produced photometric redshifts for star-forming galaxies (including highly attenuated ones) accurate to $Delta z/(1+zmathrm{_{spec})}=0.015$ with $0.7%$ outliers. We measure a slight redshift bias of $<0.001$, and we note that the redshift bias tends to be larger at higher masses. We also examine the role of redshift on the derivation of rest-frame colours and stellar population parameters from SED fitting techniques. The ZFIRE survey extends spectroscopically-confirmed $zsim 2$ samples across a richer range of environments, here we make available the first public release of the data for use by the community.footnote{url{http://zfire.swinburne.edu.au}}
We present one of the most ultraviolet (UV) luminous Lyman Break Galaxies (LBGs) (J1432+3358) at z=2.78, discovered in the NOAO Deep Wide-Field Survey (NDWFS) Bootes field. The R-band magnitude of J1432+3358 is 22.29 AB, more than two magnitudes brighter than typical L* LBGs at this redshift. The deep z-band image reveals two components of J1432+3358 separated by 1.0 with flux ratio of 3:1. The high signal-to-noise ratio (S/N) rest-frame UV spectrum shows Lya emission line and interstellar medium absorption lines. The absence of NV and CIV emission lines, the non-detection in X-ray and radio wavelengths and mid-infrared (MIR) colors indicate no or weak active galactic nuclei (AGN) (<10%) in this galaxy. The galaxy shows broader line profile with the full width half maximum (FWHM) of about 1000 km/s and larger outflow velocity (~500 km/s) than those of typical z~3 LBGs. The physical properties are derived by fitting the spectral energy distribution (SED) with stellar synthesis models. The dust extinction, E(B-V)=0.12, is similar to that in normal LBGs. The star formation rates (SFRs) derived from the SED fitting and the dust-corrected UV flux are consistent with each other, ~300 Msun/yr, and the stellar mass is 1.3e11 Msun. The SFR and stellar mass in J1432+3358 are about an order of magnitude higher than those in normal LBGs. The SED-fitting results support that J1432+3358 has a continuous star formation history with the star formation episode of 630 Myr. The morphology of J1432+3358 and its physical properties suggest that J1432+3358 is in an early phase of 3:1 merger process. The unique properties and the low space number density (~1e-7 Mpc^{-3})are consistent with the interpretation that such galaxies are either found in a short unobscured phase of the star formation or that small fraction of intensive star-forming galaxies are unobscured.
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.
We have observed the dust continuum of ten z=3.1 Lyman Break Galaxies with the Atacama Large Millimeter/Submillimeter Array at ~450 mas resolution in Band 7. We detect and resolve the 870um emission in one of the targets with an integrated flux density of S(870)=(192+/-57) uJy, and measure a stacked 3-sigma signal of S(870)=(67+/-23) uJy for the remaining nine. The total infrared luminosities estimated from full spectral energy distribution fits are L(8-1000um)=(8.4+/-2.3)x10^10 Lsun for the detection and L(8-1000um)=(2.9+/-0.9)x10^10 Lsun for the stack. With HST ACS I-band imaging we map the rest-frame UV emission on the same scale as the dust, effectively resolving the infrared excess (IRX=L_FIR/L_UV) in a normal galaxy at z=3. Integrated over the galaxy we measure IRX=0.56+/-0.15, and the galaxy-averaged UV slope is beta=-1.25+/-0.03. This puts the galaxy a factor of ~10 below the IRX-beta relation for local starburst nuclei of Meurer et al. (1999). However, IRX varies by more than a factor of 3 across the galaxy, and we conclude that the complex relative morphology of the dust relative to UV emission is largely responsible for the scatter in the IRX-beta relation at high-z. A naive application of a Meurer-like dust correction based on the UV slope would dramatically over-estimate the total star formation rate, and our results support growing evidence that when integrated over the galaxy, the typical conditions in high-z star-forming galaxies are not analogous to those in the local starburst nuclei used to establish the Meurer relation.