Do you want to publish a course? Click here

Microarcsecond structure of an AGN Jet via Interstellar Scintillation

480   0   0.0 ( 0 )
 Added by Hayley Bignall
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the broadband backend available at the ATCA to study the fast interstellar scintillation of quasar PKS 1257-326, resolving the core shift as a function of frequency on scales less than 10 microarcseconds. In this short paper we discuss the jet direction implied from the microarcsecond-scale core shift in PKS 1257-326.



rate research

Read More

Current observations have shown that astrophysical jets reveal strong signs of radial structure. They suggest that the inner region of the jet, the jet spine, consists of a low-density, fast-moving gas, while the outer region of the jet consists of a more dense and slower moving gas, called the jet sheath. Moreover, if jets carry angular momentum, the resultant centrifugal forces lead to a radial stratification. Current observations are not able to fully resolve the radial structure, so little is known about its actual profile. We present three AGN jet models in $2.5D$ of which two have been given a radial structure. The first model is a homogeneous jet, the only model that doesnt carry angular momentum; the second model is a spine-sheath jet with an isothermal equation of state; and the third jet model is a (piecewise) isochoric spine-sheath jet, with constant but different densities for jet spine and jet sheath. In this paper, we look at the effects of radial stratification on jet integrity, mixing between the different jet components and global morphology of the jet-head and surrounding cocoon.
We present a study of the central engine in the broad-line radio galaxy 3C120 using a multi-epoch analysis of a deep XMM-Newton observation and two deep Suzaku pointings (in 2012). In order to place our spectral data into the context of the disk-disruption/jet-ejection cycles displayed by this object, we monitor the source in the UV/X-ray bands, and in the radio band. We find three statistically acceptable spectral models, a disk-reflection model, a jet-model and a jet+disk model. Despite being good descriptions of the data, the disk-reflection model violates the radio constraints on the inclination, and the jet-model has a fine-tuning problem, requiring a jet contribution exceeding that expected. Thus, we argue for a composite jet+disk model. Within the context of this model, we verify the basic predictions of the jet-cycle paradigm, finding a truncated/refilling disk during the Suzaku observations and a complete disk extending down to the innermost stable circular orbit (ISCO) during the XMM-Newton observation. The idea of a refilling disk is further supported by the detection of the ejection of a new jet knot approximately one month after the Suzaku pointings. We also discover a step-like event in one of the Suzaku pointings in which the soft band lags the hard band. We suggest that we are witnessing the propagation of a disturbance from the disk into the jet on a timescale set by the magnetic field.
250 - H. E. Bignall 2006
We report measurements of time delays of up to 8 minutes in the centimeter wavelength variability patterns of the intra-hour scintillating quasar PKS 1257-326 as observed between the VLA and the ATCA on three separate epochs. These time delays confirm interstellar scintillation as the mechanism responsible for the rapid variability, at the same time effectively ruling out the coexistence of intrinsic intra-hour variability in this source. The time delays are combined with measurements of the annual variation in variability timescale exhibited by this source to determine the characteristic length scale and anisotropy of the quasars intensity scintillation pattern, as well as attempting to fit for the bulk velocity of the scattering plasma responsible for the scintillation. We find evidence for anisotropic scattering and highly elongated scintillation patterns at both 4.9 and 8.5 GHz, with an axial ratio > 10:1, extended in a northwest direction on the sky. The characteristic scale of the scintillation pattern along its minor axis is well determined, but the high anisotropy leads to degenerate solutions for the scintillation velocity. The decorrelation of the pattern over the baseline gives an estimate of the major axis length scale of the scintillation pattern. We derive an upper limit on the distance to the scattering plasma of no more than 10 pc.
The RadioAstron space radio telescope provides a unique opportunity to study the extreme brightness temperatures ($mathrm{T_B }$) in AGNs with unprecedented long baselines of up to 28 Earth diameters. Since interstellar scintillation (ISS) may affect the visibilities observed with space VLBI (sVLBI), a complementary ground based flux density monitoring of the RadioAstron targets, which is performed near in time to the VLBI observation, could be beneficial. The combination/comparison with the sVLBI data can help to unravel the relative influence of source intrinsic and ISS induced effects, which in the end may alter the conclusions on the $mathrm{T_B }$ measurements from sVLBI. Since 2013, a dedicated monitoring program has been ongoing to observe the ISS of RadioAstron AGN targets with a number of radio telescopes. Here we briefly introduce the program and present results from the statistical analysis of the Effelsberg monitoring data. We discuss the possible effects of ISS on $mathrm{T_B }$ measurements for the RadioAstron target B0529+483 as a case study.
Intensity scintillations of radio pulsars are known to originate from interference between waves scattered by the electron density irregularities of interstellar plasma, often leading to parabolic arcs in the two-dimensional power spectrum of the recorded dynamic spectrum. The degree of arc curvature depends on the distance to the scattering plasma and its transverse velocity with respect to the line-of-sight. We report the observation of annual and orbital variations in the curvature of scintillation arcs over a period of 16 years for the bright millisecond pulsar, PSR J0437-4715. These variations are the signature of the relative transverse motions of the Earth, pulsar, and scattering medium, which we model to obtain precise measurements of parameters of the pulsars binary orbit and the scattering medium itself. We observe two clear scintillation arcs in most of our $>$5000 observations and we show that they originate from scattering by thin screens located at distances $D_1 = 89.8 pm 0.4$ pc and $D_2 = 124 pm 3$ pc from Earth. The best-fit scattering model we derive for the brightest arc yields the pulsars orbital inclination angle $i = 137.1 pm 0.3^circ$, and longitude of ascending node, $Omega=206.3pm0.4^circ$. Using scintillation arcs for precise astrometry and orbital dynamics can be superior to modelling variations in the diffractive scintillation timescale, because the arc curvature is independent of variations in the level of turbulence of interstellar plasma. This technique can be used in combination with pulsar timing to determine the full three-dimensional orbital geometries of binary pulsars, and provides parameters essential for testing theories of gravity and constraining neutron star masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا