No Arabic abstract
The RadioAstron space radio telescope provides a unique opportunity to study the extreme brightness temperatures ($mathrm{T_B }$) in AGNs with unprecedented long baselines of up to 28 Earth diameters. Since interstellar scintillation (ISS) may affect the visibilities observed with space VLBI (sVLBI), a complementary ground based flux density monitoring of the RadioAstron targets, which is performed near in time to the VLBI observation, could be beneficial. The combination/comparison with the sVLBI data can help to unravel the relative influence of source intrinsic and ISS induced effects, which in the end may alter the conclusions on the $mathrm{T_B }$ measurements from sVLBI. Since 2013, a dedicated monitoring program has been ongoing to observe the ISS of RadioAstron AGN targets with a number of radio telescopes. Here we briefly introduce the program and present results from the statistical analysis of the Effelsberg monitoring data. We discuss the possible effects of ISS on $mathrm{T_B }$ measurements for the RadioAstron target B0529+483 as a case study.
We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid ($<$3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. $gamma$-ray loud sources were found to vary by up to a factor 4 more than $gamma$-ray quiet ones, with 4$sigma$ significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as $sim$70% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.
We have conducted the first systematic search for interday variability in a large sample of extragalactic radio sources at 15 GHz. From the sample of 1158 radio-selected blazars monitored over a $sim$10 year span by the Owens Valley Radio Observatory 40-m telescope, we identified 20 sources exhibiting significant flux density variations on 4-day timescales. The sky distribution of the variable sources is strongly dependent on the line-of-sight Galactic H$alpha$ intensities from the Wisconsin H$alpha$ Mapper Survey, demonstrating the contribution of interstellar scintillation (ISS) to their interday variability. 21% of sources observed through sight-lines with H$alpha$ intensities larger than 10 rayleighs exhibit significant ISS persistent over the $sim$10 year period. The fraction of scintillators is potentially larger when considering less significant variables missed by our selection criteria, due to ISS intermittency. This study demonstrates that ISS is still important at 15 GHz, particularly through strongly scattered sight-lines of the Galaxy. Of the 20 most significant variables, 11 are observed through the Orion-Eridanus superbubble, photoionized by hot stars of the Orion OB1 association. The high-energy neutrino source TXS0506$+$056 is observed through this region, so ISS must be considered in any interpretation of its short-term radio variability. J0616$-$1041 appears to exhibit large $sim$20% interday flux density variations, comparable in magnitude to that of the very rare class of extreme, intrahour scintillators that includes PKS0405$-$385, J1819$+$3845 and PKS1257$-$326; this needs to be confirmed by higher cadence follow-up observations.
In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355$+$54 at 2.25 GHz for three successive months using emph{Kunming 40-m radio telescope}. We have measured the dynamic spectrum, the two-dimensional correlation function, and the secondary spectrum. In those observations with high signal-to-noise ratio ($S/Nge100$), we have detected the scintillation arcs, which are rarely observable using such a small telescope. The sub-microsecond scale width of the scintillation arc indicates that the transverse scale of structures on scattering screen is as compact as AU size. Our monitoring has also shown that both the scintillation bandwidth, timescale, and arc curvature of PSR B0355$+$54 were varying temporally. The plausible explanation would need to invoke multiple-scattering-screen or multiple-scattering-structure scenario that different screens or ray paths dominate the scintillation process at different epochs.
We carried out multi-color optical monitoring of a sample of ten blazars from 2005 to 2011. The sample contains 3 LBLs, 2 IBLs, 4 HBLs, and 1 FSRQ. Our monitoring focused on the long-term variability and the sample included nine BL Lac objects and one flat-spectrum radio quasar. A total number of 14799 data points were collected. This is one of the largest optical database for a sample of ten blazars. All objects showed significant variability except OT 546. Because of the low sampling on each single night, only BL Lacertae was observed to have intra-day variability on 2006 November 6. Most BL Lac objects showed a bluer-when-brighter chromatism, while the flat-spectrum radio quasar, 3C 454.3, displayed a redder-when-brighter trend. The BWB color behaviors of most BL Lacs can be at least partly interpreted by the fact of increasing variation amplitude with increasing frequency observed in these objects. The average spectral index of LBLs is around 1.5, as expected from the model dominated by Synchrotron Self-Compton (SSC) loss. The optical emission of HBL is probably contaminated by the thermal emission from the host galaxies. Correlation analysis did not reveal any time delay between variations at different wavelengths.
The aim of our work was to study the spatial structure of inhomogeneities of interstellar plasma in the directions of five pulsars: B0823+26, B0834+06, B1237+25, B1929+10, and B2016+28. Observations of these pulsars were made with RadioAstron space-ground radio interferometer at 324 MHz. We measured the angular size of the scattering disks to be in range between 0.63 and 3.2 mas. We determined the position of scattering screens on the line of sight. Independent estimates of the distances to the screens were made from the curvature of parabolic arcs revealed in the secondary spectra of four pulsars. The model of uniform distribution of inhomogeneities on the line of sight is not suitable. According to the results, we came to the conclusion that scattering is mainly produced by compact plasma layers and the uniform model of inhomogeneties distribution on the line of sight in not applicable.