Do you want to publish a course? Click here

Ultrafast dynamic conductivity and scattering rate saturation of photoexcited charge carriers in silicon investigated with a midinfrared continuum probe

462   0   0.0 ( 0 )
 Added by Bo Sernelius
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We employ ultra-broadband terahertz-midinfrared probe pulses to characterize the optical response of photoinduced charge-carrier plasmas in high-resistivity silicon in a reflection geometry, over a wide range of excitation densities (10^{15}-10^{19} cm^{-3}) at room temperature. In contrast to conventional terahertz spectroscopy studies, this enables one to directly cover the frequency range encompassing the resultant plasma frequencies. The intensity reflection spectra of the thermalized plasma, measured using sum-frequency (up-conversion) detection of the probe pulses, can be modeled well by a standard Drude model with a density-dependent momentum scattering time of approx. 200 fs at low densities, reaching approx. 20 fs for densities of approx. 10^{19} cm^{-3}, where the increase of the scattering rate saturates. This behavior can be reproduced well with theoretical results based on the generalized Drude approach for the electron-hole scattering rate, where the saturation occurs due to phase-space restrictions as the plasma becomes degenerate. We also study the initial sub-picosecond temporal development of the Drude response, and discuss the observed rise in the scattering time in terms of initial charge-carrier relaxation, as well as the optical response of the photoexcited sample as predicted by finite-difference time-domain simulations.



rate research

Read More

We report results from ultrafast two-color optical pump-probe spectroscopy on bulk $beta$-Ga$_2$O$_3$. A two-photon absorption scheme is used to photoexcite carriers with the pump pulse and free-carrier absorption of the probe pulse is used to record the subsequent dynamics of the photoexcited carriers. Our results are consistent with carrier recombination via defect-assisted processes. We also observe transient polarization-selective optical absorption of the probe pulse by defect states under nonequilibrium conditions. A rate equation model for electron and hole capture by defects is proposed and used to explain the data. Whereas the rate constants for electron capture by defects are found to be temperature-independent, they are measured to be strongly temperature-dependent for hole capture and point to a lattice deformation/relaxation process accompanying hole capture. Our results shed light on the mechanisms and rates associated with carrier capture by defects in $beta$-Ga$_2$O$_3$.
106 - D.H.K. Murthy , T. Xu 2011
From electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and decay kinetics on photo-excitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. A large enhancement in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to a higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.
We investigated the photoexcited carrier dynamics in Si by using optical pump and terahertz probe spectroscopy in an energy range between 2 meV and 25 meV. The formation dynamics of excitons from unbound e-h pairs was studied through the emergence of the 1s-2p transition of excitons at 12 meV (3 THz). We revealed the thermalization mechanism of the photo-injected hot carriers (electrons and holes) in the low temperature lattice system by taking account of the interband and intraband scattering of carriers with acoustic and optical phonons. The overall cooling rate of electrons and holes was numerically calculated on the basis of a microscopic analysis of the phonon scattering processes, and the results well account for the experimentally observed carrier cooling dynamics. The long formation time of excitons in Si after the above-gap photoexcitation is reasonably accounted for by the thermalization process of photoexcited carriers.
We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe$_3$ after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibrium Greens function formalism reveals that the phase space of electron-electron scattering is critically modulated by the photoinduced collective CDW excitation, providing an intuitive microscopic understanding of the observed dynamics.
The optical conductivity of charge carriers coupled to quantum phonons is studied in the framework of the one-dimensional spinless Holstein model. For one electron, variational diagonalisation yields exact results in the thermodynamic limit, whereas at finite carrier density analytical approximations based on previous work on single-particle spectral functions are obtained. Particular emphasis is put on deviations from weak-coupling, small-polaron or one-electron theories occurring at intermediate coupling and/or finite carrier density. The analytical results are in surprisingly good agreement with exact data, and exhibit the characteristic polaronic excitations observed in experiments on manganites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا