No Arabic abstract
We report the first measurement of the target single-spin asymmetry, $A_y$, in quasi-elastic scattering from the inclusive reaction $^3$He$^{uparrow}(e,e^prime)$ on a $^3$He gas target polarized normal to the lepton scattering plane. Assuming time-reversal invariance, this asymmetry is strictly zero for one-photon exchange. A non-zero $A_y$ can arise from the interference between the one- and two-photon exchange processes which is sensitive to the details of the sub-structure of the nucleon. An experiment recently completed at Jefferson Lab yielded asymmetries with high statistical precision at $Q^{2}=$ 0.13, 0.46 and 0.97 GeV$^{2}$. These measurements demonstrate, for the first time, that the $^3$He asymmetry is clearly non-zero and negative with a statistical significance of (8-10)$sigma$. Using measured proton-to-$^{3}$He cross-section ratios and the effective polarization approximation, neutron asymmetries of $-$(1-3)% were obtained. The neutron asymmetry at high $Q^2$ is related to moments of the Generalized Parton Distributions (GPDs). Our measured neutron asymmetry at $Q^2=0.97$ GeV$^2$ agrees well with a prediction based on two-photon exchange using a GPD model and thus provides a new, independent constraint on these distributions.
We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{uparrow}left(e,e right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of $1.7 < W < 2.9$ GeV, $1.0<Q^2<4.0$ GeV$^2$ and $0.16<x<0.65$. Neutron asymmetries were extracted using the effective nucleon polarization and measured proton-to-$^3$He cross section ratios. The measured neutron asymmetries are negative with an average value of $(-1.09 pm 0.38) times10^{-2}$ for invariant mass $W>2$ GeV, which is non-zero at the $2.89sigma$ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.
Due to the lack of free neutron targets, studies of the structure of the neutron are typically made by scattering electrons from either $^2$H or $^3$He targets. In order to extract useful neutron information from a $^3$He target, one must understand how the neutron in a $^3$He system differs from a free neutron by taking into account nuclear effects such as final state interactions and meson exchange currents. The target single spin asymmetry $A_y^0$ is an ideal probe of such effects, as any deviation from zero indicates effects beyond plane wave impulse approximation. New measurements of the target single spin asymmetry $A_y^0$ at $Q^2$ of 0.46 and 0.96 (GeV/$c)^2$ were made at Jefferson Lab using the quasi-elastic $^3mathrm{He}^{uparrow}(e,en)$ reaction. Our measured asymmetry decreases rapidly, from $>20%$ at $Q^2=0.46$ (GeV/$c)^2$ to nearly zero at $Q^2=0.96$ (GeV$/c)^2$, demonstrating the fall-off of the reaction mechanism effects as $Q^2$ increases. We also observed a small $epsilon$-dependent increase in $A_y^0$ compared to previous measurements, particularly at moderate $Q^2$. This indicates that upcoming high $Q^2$ measurements from the Jefferson Lab 12 GeV program can cleanly probe neutron structure from polarized $^3$He using plane wave impulse approximation.
Precision studies of the reaction $^{3}$He(e,e$^prime$p) using the three-spectrometer facility at the Mainz microtron MAMI are presented. All data are for quasielastic kinematics at $|vec{q} | =685$ MeV/c. Absolute cross sections were measured at three electron kinematics. For the measured missing momenta range from 10 to 165 MeV/c, no strength is observed for missing energies higher than 20 MeV. Distorted momentum distributions were extracted for the two-body breakup and the continuum. The longitudinal and transverse behavior was studied by measuring the cross section for three photon polarizations. The longitudinal and transverse nature of the cross sections is well described by a currently accepted and widely used prescription of the off-shell electron-nucleon cross-section. The results are compared to modern three-body calculations and to previous data.
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (theta_lab -> 0) where they should be most reliable.
We report on a recent investigation of the single spin asymmetry (SSA) in low virtuality electroproduction of $J/psi$ in color evaporation model. We show that this can be used as a probe for the still unknown gluon Sivers function.